838 research outputs found

    Active Data: A Data-Centric Approach to Data Life-Cycle Management

    Get PDF
    International audienceData-intensive science offers new opportunities for innovation and discoveries, provided that large datasets can be handled efficiently. Data management for data-intensive science applications is challenging; requiring support for complex data life cycles, coordination across multiple sites, fault tolerance, and scalability to support tens of sites and petabytes of data. In this paper, we argue that data management for data-intensive science applications requires a fundamentally different management approach than the current ad-hoc task centric approach. We propose Active Data, a fundamentally novel paradigm for data life cycle management. Active Data follows two principles: data-centric and event-driven. We report on the Active Data programming model and its preliminary implementation, and discuss the benefits and limitations of the approach on recognized challenging data-intensive science use-cases.Les importants volumes de données produits par la science présentent de nouvelles opportunités d'innovation et de découvertes. Cependant ceci sera conditionné par notre capacité à gérer efficacement de très grands jeux de données. La gestion de données pour les applications scientifiques data-intensive présente un véritable défi~; elle requière le support de cycles de vie très complexes, la coordination de plusieurs sites, de la tolérance aux pannes et de passer à l'échelle sur des dizaines de sites avec plusieurs péta-octets de données. Dans cet article nous argumentons que la gestion des données pour les applications scientifiques data-intensive nécessite une approche fondamentalement différente de l'actuel paradigme centré sur les tâches. Nous proposons Active Data, un nouveau paradigme pour la gestion du cycle de vie des données. Active Data suit deux principes~: il est centré sur les données et à base d'événements. Nous présentons le modèle de programmation Active Data, un prototype d'implémentation et discutons des avantages et limites de notre approche à partir d'étude de cas d'applications scientifiques

    Context Aware Routing Management Architecture for Airborne Networks

    Get PDF
    This thesis advocates the use of Kalman filters in conjunction with network topology information derived from the Air Tasking Order (ATO) during the planning phase for military missions. This approach is the basis for an algorithm that implements network controls that optimize network performance for Mobile Ad hoc Networks (MANET). The trajectories of relevant nodes (airborne platforms) participating in the MANET can be forecasted by parsing key information contained in the ATO. This information is used to develop optimum network routes that can significantly improve MANET performance. Improved MANET performance in the battlefield enables decision makers to access information from several sensors that can summarize mission execution status real-time. In one simulated test case there was a 25% percent improvement of network throughput, and 23% reduction on dropped packets. Using this technique we can selectively preserve the Quality of Service (QoS) by establishing network controls that drops low priority packets when necessary. The algorithm improves the overall MANET throughput while minimizing the packets dropped due to network congestion

    Kernel-assisted and Topology-aware MPI Collective Communication among Multicore or Many-core Clusters

    Get PDF
    Multicore or many-core clusters have become the most prominent form of High Performance Computing (HPC) systems. Hardware complexity and hierarchies not only exist in the inter-node layer, i.e., hierarchical networks, but also exist in internals of multicore compute nodes, e.g., Non Uniform Memory Accesses (NUMA), network-style interconnect, and memory and shared cache hierarchies. Message Passing Interface (MPI), the most widely adopted in the HPC communities, suffers from decreased performance and portability due to increased hardware complexity of multiple levels. We identified three critical issues specific to collective communication: The first problem arises from the gap between logical collective topologies and underlying hardware topologies; Second, current MPI communications lack efficient shared memory message delivering approaches; Last, on distributed memory machines, like multicore clusters, a single approach cannot encompass the extreme variations not only in the bandwidth and latency capabilities, but also in features such as the aptitude to operate multiple concurrent copies simultaneously. To bridge the gap between logical collective topologies and hardware topologies, we developed a distance-aware framework to integrate the knowledge of hardware distance into collective algorithms in order to dynamically reshape the communication patterns to suit the hardware capabilities. Based on process distance information, we used graph partitioning techniques to organize the MPI processes in a multi-level hierarchy, mapping on the hardware characteristics. Meanwhile, we took advantage of the kernel-assisted one-sided single-copy approach (KNEM) as the default shared memory delivering method. Via kernel-assisted memory copy, the collective algorithms offload copy tasks onto non-leader/not-root processes to evenly distribute copy workloads among available cores. Finally, on distributed memory machines, we developed a technique to compose multi-layered collective algorithms together to express a multi-level algorithm with tight interoperability between the levels. This tight collaboration results in more overlaps between inter- and intra-node communication. Experimental results have confirmed that, by leveraging several technologies together, such as kernel-assisted memory copy, the distance-aware framework, and collective algorithm composition, not only do MPI collectives reach the potential maximum performance on a wide variation of platforms, but they also deliver a level of performance immune to modifications of the underlying process-core binding

    New Directions in Cloud Programming

    Full text link
    Nearly twenty years after the launch of AWS, it remains difficult for most developers to harness the enormous potential of the cloud. In this paper we lay out an agenda for a new generation of cloud programming research aimed at bringing research ideas to programmers in an evolutionary fashion. Key to our approach is a separation of distributed programs into a PACT of four facets: Program semantics, Availablity, Consistency and Targets of optimization. We propose to migrate developers gradually to PACT programming by lifting familiar code into our more declarative level of abstraction. We then propose a multi-stage compiler that emits human-readable code at each stage that can be hand-tuned by developers seeking more control. Our agenda raises numerous research challenges across multiple areas including language design, query optimization, transactions, distributed consistency, compilers and program synthesis

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    Present and Future of SLAM in Extreme Underground Environments

    Full text link
    This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on lidar-centric SLAM solutions (the go-to approach for virtually all teams in the competition), heterogeneous multi-robot operation (including both aerial and ground robots), and real-world underground operation (from the presence of obscurants to the need to handle tight computational constraints). We do not shy away from discussing the dirty details behind the different SubT SLAM systems, which are often omitted from technical papers. Second, we discuss the maturity of the field by highlighting what is possible with the current SLAM systems and what we believe is within reach with some good systems engineering. Third, we outline what we believe are fundamental open problems, that are likely to require further research to break through. Finally, we provide a list of open-source SLAM implementations and datasets that have been produced during the SubT challenge and related efforts, and constitute a useful resource for researchers and practitioners.Comment: 21 pages including references. This survey paper is submitted to IEEE Transactions on Robotics for pre-approva
    • …
    corecore