1,071 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Efficient Mission Planning for Robot Networks in Communication Constrained Environments

    Get PDF
    Many robotic systems are remotely operated nowadays that require uninterrupted connection and safe mission planning. Such systems are commonly found in military drones, search and rescue operations, mining robotics, agriculture, and environmental monitoring. Different robotic systems may employ disparate communication modalities such as radio network, visible light communication, satellite, infrared, Wi-Fi. However, in an autonomous mission where the robots are expected to be interconnected, communication constrained environment frequently arises due to the out of range problem or unavailability of the signal. Furthermore, several automated projects (building construction, assembly line) do not guarantee uninterrupted communication, and a safe project plan is required that optimizes collision risks, cost, and duration. In this thesis, we propose four pronged approaches to alleviate some of these issues: 1) Communication aware world mapping; 2) Communication preserving using the Line-of-Sight (LoS); 3) Communication aware safe planning; and 4) Multi-Objective motion planning for navigation. First, we focus on developing a communication aware world map that integrates traditional world models with the planning of multi-robot placement. Our proposed communication map selects the optimal placement of a chain of intermediate relay vehicles in order to maximize communication quality to a remote unit. We also vi propose an algorithm to build a min-Arborescence tree when there are multiple remote units to be served. Second, in communication denied environments, we use Line-of-Sight (LoS) to establish communication between mobile robots, control their movements and relay information to other autonomous units. We formulate and study the complexity of a multi-robot relay network positioning problem and propose approximation algorithms that restore visibility based connectivity through the relocation of one or more robots. Third, we develop a framework to quantify the safety score of a fully automated robotic mission where the coexistence of human and robot may pose a collision risk. A number of alternate mission plans are analyzed using motion planning algorithms to select the safest one. Finally, an efficient multi-objective optimization based path planning for the robots is developed to deal with several Pareto optimal cost attributes
    • …
    corecore