4,779 research outputs found

    A Zooming Technique for Wind Transport of Air Pollution

    Get PDF
    In air pollution dispersion models, typically systems of millions of equations that describe wind transport, chemistry and vertical mixing have to be integrated in time. To have more accurate results over specific fixed areas of interest---usually highly polluted areas with intensive emissions---a local grid refinement or zoom is often required. For the wind transport part of the models, i.e.\ for finite volume discretizations of the transport equation, we propose a zoom technique that is positive, mass-conservative and allows to use smaller time steps as enforced by the CFL restriction in the zoom regions only

    Fornax: a Flexible Code for Multiphysics Astrophysical Simulations

    Full text link
    This paper describes the design and implementation of our new multi-group, multi-dimensional radiation hydrodynamics (RHD) code Fornax and provides a suite of code tests to validate its application in a wide range of physical regimes. Instead of focusing exclusively on tests of neutrino radiation hydrodynamics relevant to the core-collapse supernova problem for which Fornax is primarily intended, we present here classical and rigorous demonstrations of code performance relevant to a broad range of multi-dimensional hydrodynamic and multi-group radiation hydrodynamic problems. Our code solves the comoving-frame radiation moment equations using the M1 closure, utilizes conservative high-order reconstruction, employs semi-explicit matter and radiation transport via a high-order time stepping scheme, and is suitable for application to a wide range of astrophysical problems. To this end, we first describe the philosophy, algorithms, and methodologies of Fornax and then perform numerous stringent code tests, that collectively and vigorously exercise the code, demonstrate the excellent numerical fidelity with which it captures the many physical effects of radiation hydrodynamics, and show excellent strong scaling well above 100k MPI tasks.Comment: Accepted to the Astrophysical Journal Supplement Series; A few more textual and reference updates; As before, one additional code test include

    An acoustic view of ocean mixing

    Get PDF
    Knowledge of the parameter K (turbulent diffusivity/"mixing intensity") is a key to understand transport processes of matter and energy in the ocean. Especially the almost vertical component of K across the ocean stratification (diapycnal diffusivity) is vital for research on biogeochemical cycles or greenhouse gas budgets. Recent boost in precision of water velocity data that can be obtained from vessel-mounted acoustic instruments (vmADCP) allows identifying ocean regions of elevated diapycnal diffusivity during research cruises - in high horizontal resolution and without extra ship time needed. This contribution relates acoustic data from two cruises in the Tropical North East Atlantic Oxygen Minimum Zone to simultaneous field observations of diapycnal diffusivity: pointwise measurements by a microstructure profiler as well as one integrative value from a large scale Tracer Release Experiment

    An analytical study of transport, mixing and chaos in an unsteady vortical flow

    Get PDF
    We examine the transport properties of a particular two-dimensional, inviscid incompressible flow using dynamical systems techniques. The velocity field is time periodic and consists of the field induced by a vortex pair plus an oscillating strainrate field. In the absence of the strain-rate field the vortex pair moves with a constant velocity and carries with it a constant body of fluid. When the strain-rate field is added the picture changes dramatically; fluid is entrained and detrained from the neighbourhood of the vortices and chaotic particle motion occurs. We investigate the mechanism for this phenomenon and study the transport and mixing of fluid in this flow. Our work consists of both numerical and analytical studies. The analytical studies include the interpretation of the invariant manifolds as the underlying structure which govern the transport. For small values of strain-rate amplitude we use Melnikov's technique to investigate the behaviour of the manifolds as the parameters of the problem change and to prove the existence of a horseshoe map and thus the existence of chaotic particle paths in the flow. Using the Melnikov technique once more we develop an analytical estimate of the flux rate into and out of the vortex neighbourhood. We then develop a technique for determining the residence time distribution for fluid particles near the vortices that is valid for arbitrary strainrate amplitudes. The technique involves an understanding of the geometry of the tangling of the stable and unstable manifolds and results in a dramatic reduction in computational effort required for the determination of the residence time distributions. Additionally, we investigate the total stretch of material elements while they are in the vicinity of the vortex pair, using this quantity as a measure of the effect of the horseshoes on trajectories passing through this region. The numerical work verifies the analytical predictions regarding the structure of the invariant manifolds, the mechanism for entrainment and detrainment and the flux rate

    Particles and fields in fluid turbulence

    Full text link
    The understanding of fluid turbulence has considerably progressed in recent years. The application of the methods of statistical mechanics to the description of the motion of fluid particles, i.e. to the Lagrangian dynamics, has led to a new quantitative theory of intermittency in turbulent transport. The first analytical description of anomalous scaling laws in turbulence has been obtained. The underlying physical mechanism reveals the role of statistical integrals of motion in non-equilibrium systems. For turbulent transport, the statistical conservation laws are hidden in the evolution of groups of fluid particles and arise from the competition between the expansion of a group and the change of its geometry. By breaking the scale-invariance symmetry, the statistically conserved quantities lead to the observed anomalous scaling of transported fields. Lagrangian methods also shed new light on some practical issues, such as mixing and turbulent magnetic dynamo.Comment: 165 pages, review article for Rev. Mod. Phy

    Kentucky Water Resources Research Institute Annual Technical Report FY 2006

    Get PDF
    The 2006 Annual Technical Report for Kentucky consolidates reporting requirements of the Section 104(b) base grant award into a single techincal report that includes: 1) a synopsis of each student research enhancement project conducted during the period, 2) citations for related reports and presentations, 3) a description of information transfer activities, 4) a summary of student support during the reporting period, 5) notable awards and achievements during the year, and 6) publications from prior projects

    Kentucky Water Resources Research Institute Annual Technical Report FY 2006

    Get PDF
    The 2006 Annual Technical Report for Kentucky consolidates reporting requirements of the Section 104(b) base grant award into a single techincal report that includes: 1) a synopsis of each student research enhancement project conducted during the period, 2) citations for related reports and presentations, 3) a description of information transfer activities, 4) a summary of student support during the reporting period, 5) notable awards and achievements during the year, and 6) publications from prior projects
    • ā€¦
    corecore