4,207 research outputs found

    Computing and data processing

    Get PDF
    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Instituteā€™s HIV-screening dataset

    Two-layer classification and distinguished representations of users and documents for grouping and authorship identification

    Get PDF
    Most studies on authorship identification reported a drop in the identification result when the number of authors exceeds 20-25. In this paper, we introduce a new user representation to address this problem and split classification across two layers. There are at least 3 novelties in this paper. First, the two-layer approach allows applying authorship identification over larger number of authors (tested over 100 authors), and it is extendable. The authors are divided into groups that contain smaller number of authors. Given an anonymous document, the primary layer detects the group to which the document belongs. Then, the secondary layer determines the particular author inside the selected group. In order to extract the groups linking similar authors, clustering is applied over users rather than documents. Hence, the second novelty of this paper is introducing a new user representation that is different from document representation. Without the proposed user representation, the clustering over documents will result in documents of author(s) distributed over several clusters, instead of a single cluster membership for each author. Third, the extracted clusters are descriptive and meaningful of their users as the dimensions have psychological backgrounds. For authorship identification, the documents are labelled with the extracted groups and fed into machine learning to build classification models that predicts the group and author of a given document. The results show that the documents are highly correlated with the extracted corresponding groups, and the proposed model can be accurately trained to determine the group and the author identity
    • ā€¦
    corecore