16,301 research outputs found

    Security, trust and cooperation in wireless sensor networks

    Get PDF
    Wireless sensor networks are a promising technology for many real-world applications such as critical infrastructure monitoring, scientific data gathering, smart buildings, etc.. However, given the typically unattended and potentially unsecured operation environment, there has been an increased number of security threats to sensor networks. In addition, sensor networks have very constrained resources, such as limited energy, memory, computational power, and communication bandwidth. These unique challenges call for new security mechanisms and algorithms. In this dissertation, we propose novel algorithms and models to address some important and challenging security problems in wireless sensor networks. The first part of the dissertation focuses on data trust in sensor networks. Since sensor networks are mainly deployed to monitor events and report data, the quality of received data must be ensured in order to make meaningful inferences from sensor data. We first study a false data injection attack in the distributed state estimation problem and propose a distributed Bayesian detection algorithm, which could maintain correct estimation results when less than one half of the sensors are compromised. To deal with the situation where more than one half of the sensors may be compromised, we introduce a special class of sensor nodes called \textit{trusted cores}. We then design a secure distributed trust aggregation algorithm that can utilize the trusted cores to improve network robustness. We show that as long as there exist some paths that can connect each regular node to one of these trusted cores, the network can not be subverted by attackers. The second part of the dissertation focuses on sensor network monitoring and anomaly detection. A sensor network may suffer from system failures due to loss of links and nodes, or malicious intrusions. Therefore, it is critical to continuously monitor the overall state of the network and locate performance anomalies. The network monitoring and probe selection problem is formulated as a budgeted coverage problem and a Markov decision process. Efficient probing strategies are designed to achieve a flexible tradeoff between inference accuracy and probing overhead. Based on the probing results on traffic measurements, anomaly detection can be conducted. To capture the highly dynamic network traffic, we develop a detection scheme based on multi-scale analysis of the traffic using wavelet transforms and hidden Markov models. The performance of the probing strategy and of the detection scheme are extensively evaluated in malicious scenarios using the NS-2 network simulator. Lastly, to better understand the role of trust in sensor networks, a game theoretic model is formulated to mathematically analyze the relation between trust and cooperation. Given the trust relations, the interactions among nodes are modeled as a network game on a trust-weighted graph. We then propose an efficient heuristic method that explores network heterogeneity to improve Nash equilibrium efficiency

    An End-to-End Authentication Mechanism for Wireless Body Area Networks

    Full text link
    Wireless Body Area Network (WBAN) ensures high-quality healthcare services by endowing distant and continual monitoring of patients' health conditions. The security and privacy of the sensitive health-related data transmitted through the WBAN should be preserved to maximize its benefits. In this regard, user authentication is one of the primary mechanisms to protect health data that verifies the identities of entities involved in the communication process. Since WBAN carries crucial health data, every entity engaged in the data transfer process must be authenticated. In literature, an end-to-end user authentication mechanism covering each communicating party is absent. Besides, most of the existing user authentication mechanisms are designed assuming that the patient's mobile phone is trusted. In reality, a patient's mobile phone can be stolen or comprised by malware and thus behaves maliciously. Our work addresses these drawbacks and proposes an end-to-end user authentication and session key agreement scheme between sensor nodes and medical experts in a scenario where the patient's mobile phone is semi-trusted. We present a formal security analysis using BAN logic. Besides, we also provide an informal security analysis of the proposed scheme. Both studies indicate that our method is robust against well-known security attacks. In addition, our scheme achieves comparable computation and communication costs concerning the related existing works. The simulation shows that our method preserves satisfactory network performance

    KALwEN+: Practical Key Management Schemes for Gossip-Based Wireless Medical Sensor Networks

    Get PDF
    The constrained resources of sensors restrict the design of a key management scheme for wireless sensor networks (WSNs). In this work, we first formalize the security model of ALwEN, which is a gossip-based wireless medical sensor network (WMSN) for ambient assisted living. Our security model considers the node capture, the gossip-based network and the revocation problems, which should be valuable for ALwEN-like applications. Based on Shamir's secret sharing technique, we then propose two key management schemes for ALwEN, namely the KALwEN+ schemes, which are proven with the security properties defined in the security model. The KALwEN+ schemes not only fit ALwEN, but also can be tailored to other scalable wireless sensor networks based on gossiping

    Intrusion-aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Get PDF
    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.Comment: 19 pages, 7 figure

    A Trust Based Congestion Aware Hybrid Ant Colony Optimization Algorithm for Energy Efficient Routing in Wireless Sensor Networks (TC-ACO)

    Full text link
    Congestion is a problem of paramount importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources. Sensor nodes are prone to failure and the misbehavior of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols. Unfortunately most of the researchers have tried to make the routing schemes energy efficient without considering congestion factor and the effect of the faulty nodes. In this paper we have proposed a congestion aware, energy efficient, routing approach that utilizes Ant Colony Optimization algorithm, in which faulty nodes are isolated by means of the concept of trust. The merits of the proposed scheme are verified through simulations where they are compared with other protocols.Comment: 6 pages, 5 figures and 2 tables (Conference Paper

    Secure communication in IP-based wireless sensor network via a trusted gateway

    Get PDF
    As the IP-integration of wireless sensor networks enables end-to-end interactions, solutions to appropriately secure these interactions with hosts on the Internet are necessary. At the same time, burdening wireless sensors with heavy security protocols should be avoided. While Datagram TLS (DTLS) strikes a good balance between these requirements, it entails a high cost for setting up communication sessions. Furthermore, not all types of communication have the same security requirements: e.g. some interactions might only require authorization and do not need confidentiality. In this paper we propose and evaluate an approach that relies on a trusted gateway to mitigate the high cost of the DTLS handshake in the WSN and to provide the flexibility necessary to support a variety of security requirements. The evaluation shows that our approach leads to considerable energy savings and latency reduction when compared to a standard DTLS use case, while requiring no changes to the end hosts themselves

    Secure Communication using Identity Based Encryption

    Get PDF
    Secured communication has been widely deployed to guarantee confidentiality and\ud integrity of connections over untrusted networks, e.g., the Internet. Although\ud secure connections are designed to prevent attacks on the connection, they hide\ud attacks inside the channel from being analyzed by Intrusion Detection Systems\ud (IDS). Furthermore, secure connections require a certain key exchange at the\ud initialization phase, which is prone to Man-In-The-Middle (MITM) attacks. In this paper, we present a new method to secure connection which enables Intrusion Detection and overcomes the problem of MITM attacks. We propose to apply Identity Based Encryption (IBE) to secure a communication channel. The key escrow property of IBE is used to recover the decryption key, decrypt network traffic on the fly, and scan for malicious content. As the public key can be generated based on the identity of the connected server and its exchange is not necessary, MITM attacks are not easy to be carried out any more. A prototype of a modified TLS scheme is implemented and proved with a simple client-server application. Based on this prototype, a new IDS sensor is developed to be capable of identifying IBE encrypted secure traffic on the fly. A deployment architecture of the IBE sensor in a company network is proposed. Finally, we show the applicability by a practical experiment and some preliminary performance measurements

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page
    corecore