583,859 research outputs found

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    An Achievable Rate for the MIMO Individual Channel

    Full text link
    We consider the problem of communicating over a multiple-input multiple-output (MIMO) real valued channel for which no mathematical model is specified, and achievable rates are given as a function of the channel input and output sequences known a-posteriori. This paper extends previous results regarding individual channels by presenting a rate function for the MIMO individual channel, and showing its achievability in a fixed transmission rate communication scenario.Comment: to be presented at ITW201

    Polynomial-Time Approximation Scheme for Data Broadcast

    Full text link
    The data broadcast problem is to find a schedule for broadcasting a given set of messages over multiple channels. The goal is to minimize the cost of the broadcast plus the expected response time to clients who periodically and probabilistically tune in to wait for particular messages. The problem models disseminating data to clients in asymmetric communication environments, where there is a much larger capacity from the information source to the clients than in the reverse direction. Examples include satellites, cable TV, internet broadcast, and mobile phones. Such environments favor the ``push-based'' model where the server broadcasts (pushes) its information on the communication medium and multiple clients simultaneously retrieve the specific information of individual interest. This paper presents the first polynomial-time approximation scheme (PTAS) for data broadcast with O(1) channels and when each message has arbitrary probability, unit length and bounded cost. The best previous polynomial-time approximation algorithm for this case has a performance ratio of 9/8

    Joint Unitary Triangularization for MIMO Networks

    Full text link
    This work considers communication networks where individual links can be described as MIMO channels. Unlike orthogonal modulation methods (such as the singular-value decomposition), we allow interference between sub-channels, which can be removed by the receivers via successive cancellation. The degrees of freedom earned by this relaxation are used for obtaining a basis which is simultaneously good for more than one link. Specifically, we derive necessary and sufficient conditions for shaping the ratio vector of sub-channel gains of two broadcast-channel receivers. We then apply this to two scenarios: First, in digital multicasting we present a practical capacity-achieving scheme which only uses scalar codes and linear processing. Then, we consider the joint source-channel problem of transmitting a Gaussian source over a two-user MIMO channel, where we show the existence of non-trivial cases, where the optimal distortion pair (which for high signal-to-noise ratios equals the optimal point-to-point distortions of the individual users) may be achieved by employing a hybrid digital-analog scheme over the induced equivalent channel. These scenarios demonstrate the advantage of choosing a modulation basis based upon multiple links in the network, thus we coin the approach "network modulation".Comment: Submitted to IEEE Tran. Signal Processing. Revised versio

    Multichannel social signatures and persistent features of ego networks

    Get PDF
    The structure of egocentric networks reflects the way people balance their need for strong, emotionally intense relationships and a diversity of weaker ties. Egocentric network structure can be quantified with ’social signatures’, which describe how people distribute their communication effort across the members (alters) of their personal networks. Social signatures based on call data have indicated that people mostly communicate with a few close alters; they also have persistent, distinct signatures. To examine if these results hold for other channels of communication, here we compare social signatures built from call and text message data, and develop a way of constructing mixed social signatures using both channels. We observe that all types of signatures display persistent individual differences that remain stable despite the turnover in individual alters. We also show that call, text, and mixed signatures resemble one another both at the population level and at the level of individuals. The consistency of social signatures across individuals for different channels of communication is surprising because the choice of channel appears to be alter-specific with no clear overall pattern, and ego networks constructed from calls and texts overlap only partially in terms of alters. These results demonstrate individuals vary in how they allocate their communication effort across their personal networks and this variation is persistent over time and across different channels of communication

    On Power Allocation for Distributed Detection with Correlated Observations and Linear Fusion

    Full text link
    We consider a binary hypothesis testing problem in an inhomogeneous wireless sensor network, where a fusion center (FC) makes a global decision on the underlying hypothesis. We assume sensors observations are correlated Gaussian and sensors are unaware of this correlation when making decisions. Sensors send their modulated decisions over fading channels, subject to individual and/or total transmit power constraints. For parallel-access channel (PAC) and multiple-access channel (MAC) models, we derive modified deflection coefficient (MDC) of the test statistic at the FC with coherent reception.We propose a transmit power allocation scheme, which maximizes MDC of the test statistic, under three different sets of transmit power constraints: total power constraint, individual and total power constraints, individual power constraints only. When analytical solutions to our constrained optimization problems are elusive, we discuss how these problems can be converted to convex ones. We study how correlation among sensors observations, reliability of local decisions, communication channel model and channel qualities and transmit power constraints affect the reliability of the global decision and power allocation of inhomogeneous sensors
    corecore