15,998 research outputs found

    Modeling the Behavior of an Electronically Switchable Directional Antenna for Wireless Sensor Networks

    Get PDF
    Reducing power consumption is among the top concerns in Wireless Sensor Networks, as the lifetime of a Wireless Sensor Network depends on its power consumption. Directional antennas help achieve this goal contrary to the commonly used omnidirectional antennas that radiate electromagnetic power equally in all directions, by concentrating the radiated electromagnetic power only in particular directions. This enables increased communication range at no additional energy cost and reduces contention on the wireless medium. The SPIDA (SICS Parasitic Interference Directional Antenna) prototype is one of the few real-world prototypes of electronically switchable directional antennas for Wireless Sensor Networks. However, building several prototypes of SPIDA and conducting real-world experiments using them may be expensive and impractical. Modeling SPIDA based on real-world experiments avoids the expenses incurred by enabling simulation of large networks equipped with SPIDA. Such a model would then allow researchers to develop new algorithms and protocols that take advantage of the provided directional communication on existing Wireless Sensor Network simulators. In this thesis, a model of SPIDA for Wireless Sensor Networks is built based on thoroughly designed real-world experiments. The thesis builds a probabilistic model that accounts for variations in measurements, imperfections in the prototype construction, and fluctuations in experimental settings that affect the values of the measured metrics. The model can be integrated into existing Wireless Sensor Network simulators to foster the research of new algorithms and protocols that take advantage of directional communication. The model returns the values of signal strength and packet reception rate from a node equipped with SPIDA at a certain point in space given the two-dimensional distance coordinates of the point and the configuration of SPIDA as inputs

    Electronically-switched Directional Antennas for Low-power Wireless Networks: A Prototype-driven Evaluation

    Get PDF
    We study the benefits of electronically-switched directional antennas in low-power wireless networks. This antenna technology may improve energy efficiency by increasing the communication range and by alleviating contention in directions other than the destination, but in principle requires a dedicated network stack. Unlike most existing works, we start by characterizing a real-world antenna prototype, and apply this to an existing low-power wireless stack, which we adapt with minimal changes. Our results show that: i) the combination of a low-cost directional antenna and a conventional network stack already brings significant performance improvements, e.g., nearly halving the radio-on time per delivered packet; ii) the margin of improvement available to alternative clean-slate protocol designs is similarly large and concentrated in the control rather than the data plane; iii) by artificially modifying our antenna's link-layer model, we can point at further potential benefits opened by different antenna designs

    Adaptive multi-channel MAC protocol for dense VANET with directional antennas

    No full text
    Directional antennas in Ad hoc networks offer more benefits than the traditional antennas with omni-directional mode. With directional antennas, it can increase the spatial reuse of the wireless channel. A higher gain of directional antennas makes terminals a further transmission range and fewer hops to the destination. This paper presents the design, implementation and simulation results of a multi-channel Medium Access Control (MAC) protocols for dense Vehicular Ad hoc Networks using directional antennas with local beam tables. Numeric results show that our protocol performs better than the existing multichannel protocols in vehicular environment

    On Capacity and Delay of Multi-channel Wireless Networks with Infrastructure Support

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an MC-IS network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an MC-IS network. Our proposed MC-IS network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an SC-AH network), a multi-channel wireless ad hoc network (called an MC-AH network) and a single-channel network with infrastructure support (called an SC-IS network). In particular, the network capacity of our proposed MC-IS network is nlogn\sqrt{n \log n} times higher than that of an SC-AH network and an MC-AH network and the same as that of an SC-IS network, where nn is the number of nodes in the network. The average delay of our MC-IS network is logn/n\sqrt{\log n/n} times lower than that of an SC-AH network and an MC-AH network, and min{CI,m}\min\{C_I,m\} times lower than the average delay of an SC-IS network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively. Our analysis on an MC-IS network equipped with omni-directional antennas only has been extended to an MC-IS network equipped with directional antennas only, which are named as an MC-IS-DA network. We show that an MC-IS-DA network has an even lower delay of c2πθCI\frac{c}{\lfloor \frac{2\pi}{\theta}\rfloor \cdot C_I} compared with an SC-IS network and our MC-IS network. For example, when CI=12C_I=12 and θ=π12\theta=\frac{\pi}{12}, an MC-IS-DA network can further reduce the delay by 24 times lower that of an MC-IS network and reduce the delay by 288 times lower than that of an SC-IS network.Comment: accepted, IEEE Transactions on Vehicular Technology, 201
    corecore