1,199 research outputs found

    Socially Aware Motion Planning with Deep Reinforcement Learning

    Full text link
    For robotic vehicles to navigate safely and efficiently in pedestrian-rich environments, it is important to model subtle human behaviors and navigation rules (e.g., passing on the right). However, while instinctive to humans, socially compliant navigation is still difficult to quantify due to the stochasticity in people's behaviors. Existing works are mostly focused on using feature-matching techniques to describe and imitate human paths, but often do not generalize well since the feature values can vary from person to person, and even run to run. This work notes that while it is challenging to directly specify the details of what to do (precise mechanisms of human navigation), it is straightforward to specify what not to do (violations of social norms). Specifically, using deep reinforcement learning, this work develops a time-efficient navigation policy that respects common social norms. The proposed method is shown to enable fully autonomous navigation of a robotic vehicle moving at human walking speed in an environment with many pedestrians.Comment: 8 page

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG gefƶrderten) Allianz- bzw. Nationallizenz frei zugƤnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin

    Robotic control based on the human nervous system

    Get PDF
    This article presents a model of robotic control system inspired by the human neuroregulatory system. This model allows the application of functional and organizational principles of biological systems to robotic systems. It also proposes appropriate technologies to implement this proposal, in particular the services. To illustrate the proposal, we implemented a control system for mobile robots in dynamic open environments, demonstrating the viability of both the model and the technologies chosen for implementation

    Hybrid automata dicretising agents for formal modelling of robots

    No full text
    Some of the fundamental capabilities required by autonomous vehicles and systems for their intelligent decision making are: modelling of the environment and forming data abstractions for symbolic, logic based reasoning. The paper formulates a discrete agent framework that abstracts and controls a hybrid system that is a composition of hybrid automata modelled continuous individual processes. Theoretical foundations are laid down for a class of general model composition agents (MCAs) with an advanced subclass of rational physical agents (RPAs). We define MCAs as the most basic structures for the description of complex autonomous robotic systems. The RPAā€™s have logic based decision making that is obtained by an extension of the hybrid systems concepts using a set of abstractions. The theory presented helps the creation of robots with reliable performance and safe operation in their environment. The paper emphasizes the abstraction aspects of the overall hybrid system that emerges from parallel composition of sets of RPAs and MCAs
    • ā€¦
    corecore