4,170 research outputs found

    Implementing P Systems Parallelism by Means of GPUs

    Get PDF
    Software development for Membrane Computing is growing up yielding new applications. Nowadays, the efficiency of P systems simulators have become a critical point when working with instances of large size. The newest generation of GPUs (Graphics Processing Units) provide a massively parallel framework to compute general purpose computations. We present GPUs as an alternative to obtain better performance in the simulation of P systems and we illustrate it by giving a solution to the N-Queens problem as an example.Ministerio de Educación y Ciencia TIN2006-13425Junta de Andalucía P08–TIC-0420

    Simulating a P system based efficient solution to SAT by using GPUs

    Get PDF
    P systems are inherently parallel and non-deterministic theoretical computing devices defined inside the field of Membrane Computing. Many P system simulators have been presented in this area, but they are inefficient since they cannot handle the parallelism of these devices. Nowadays, we are witnessing the consolidation of the GPUs as a parallel framework to compute general purpose applications. In this paper, we analyse GPUs as an alternative parallel architecture to improve the performance in the simulation of P systems, and we illustrate it by using the case study of a family of P systems that provides an efficient and uniform solution to the SAT problem. Firstly, we develop a simulator that fully simulates the computation of the P system, demonstrating that GPUs are well suited to simulate them. Then, we adapt this simulator to the GPU architecture idiosyncrasies, improving the performance of the previous simulator.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08–TIC-0420

    SAT and CP: Parallelisation and Applications

    Get PDF
    This thesis is considered with the parallelisation of solvers which search for either an arbitrary, or an optimum, solution to a problem stated in some formal way. We discuss the parallelisation of two solvers, and their application in three chapters.In the first chapter, we consider SAT, the decision problem of propositional logic, and algorithms for showing the satisfiability or unsatisfiability of propositional formulas. We sketch some proof-theoretic foundations which are related to the strength of different algorithmic approaches. Furthermore, we discuss details of the implementations of SAT solvers, and show how to improve upon existing sequential solvers. Lastly, we discuss the parallelisation of these solvers with a focus on clause exchange, the communication of intermediate results within a parallel solver. The second chapter is concerned with Contraint Programing (CP) with learning. Contrary to classical Constraint Programming techniques, this incorporates learning mechanisms as they are used in the field of SAT solving. We present results from parallelising CHUFFED, a learning CP solver. As this is both a kind of CP and SAT solver, it is not clear which parallelisation approaches work best here. In the final chapter, we will discuss Sorting networks, which are data oblivious sorting algorithms, i. e., the comparisons they perform do not depend on the input data. Their independence of the input data lends them to parallel implementation. We consider the question how many parallel sorting steps are needed to sort some inputs, and present both lower and upper bounds for several cases
    corecore