42,223 research outputs found

    Communication cost of consensus for nodes with limited memory

    Full text link
    Motivated by applications in blockchains and sensor networks, we consider a model of nn nodes trying to reach consensus on their majority bit. Each node ii is assigned a bit at time zero, and is a finite automaton with mm bits of memory (i.e., 2m2^m states) and a Poisson clock. When the clock of ii rings, ii can choose to communicate, and is then matched to a uniformly chosen node jj. The nodes jj and ii may update their states based on the state of the other node. Previous work has focused on minimizing the time to consensus and the probability of error, while our goal is minimizing the number of communications. We show that when m>3logloglog(n)m>3 \log\log\log(n), consensus can be reached at linear communication cost, but this is impossible if m<logloglog(n)m<\log\log\log(n). We also study a synchronous variant of the model, where our upper and lower bounds on mm for achieving linear communication cost are 2logloglog(n)2\log\log\log(n) and logloglog(n)\log\log\log(n), respectively. A key step is to distinguish when nodes can become aware of knowing the majority bit and stop communicating. We show that this is impossible if their memory is too low.Comment: 62 pages, 5 figure

    Distributed Deblurring of Large Images of Wide Field-Of-View

    Full text link
    Image deblurring is an economic way to reduce certain degradations (blur and noise) in acquired images. Thus, it has become essential tool in high resolution imaging in many applications, e.g., astronomy, microscopy or computational photography. In applications such as astronomy and satellite imaging, the size of acquired images can be extremely large (up to gigapixels) covering wide field-of-view suffering from shift-variant blur. Most of the existing image deblurring techniques are designed and implemented to work efficiently on centralized computing system having multiple processors and a shared memory. Thus, the largest image that can be handle is limited by the size of the physical memory available on the system. In this paper, we propose a distributed nonblind image deblurring algorithm in which several connected processing nodes (with reasonable computational resources) process simultaneously different portions of a large image while maintaining certain coherency among them to finally obtain a single crisp image. Unlike the existing centralized techniques, image deblurring in distributed fashion raises several issues. To tackle these issues, we consider certain approximations that trade-offs between the quality of deblurred image and the computational resources required to achieve it. The experimental results show that our algorithm produces the similar quality of images as the existing centralized techniques while allowing distribution, and thus being cost effective for extremely large images.Comment: 16 pages, 10 figures, submitted to IEEE Trans. on Image Processin

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    PADS: Practical Attestation for Highly Dynamic Swarm Topologies

    Full text link
    Remote attestation protocols are widely used to detect device configuration (e.g., software and/or data) compromise in Internet of Things (IoT) scenarios. Unfortunately, the performances of such protocols are unsatisfactory when dealing with thousands of smart devices. Recently, researchers are focusing on addressing this limitation. The approach is to run attestation in a collective way, with the goal of reducing computation and communication. Despite these advances, current solutions for attestation are still unsatisfactory because of their complex management and strict assumptions concerning the topology (e.g., being time invariant or maintaining a fixed topology). In this paper, we propose PADS, a secure, efficient, and practical protocol for attesting potentially large networks of smart devices with unstructured or dynamic topologies. PADS builds upon the recent concept of non-interactive attestation, by reducing the collective attestation problem into a minimum consensus one. We compare PADS with a state-of-the art collective attestation protocol and validate it by using realistic simulations that show practicality and efficiency. The results confirm the suitability of PADS for low-end devices, and highly unstructured networks.Comment: Submitted to ESORICS 201

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    corecore