97,775 research outputs found

    Control and Communication-Schedule Co-design For Networked Control Systems

    Get PDF
    In a networked control system (NCS), the control loop is closed through a communication medium. This means that sensor measurements and/or control signals can be exchanged through a communication link. NCSs have many benefits, such as wiring reduction (elimination in the case of wireless communication), installation cost reduction, and simplification of upgrades and restructuring. However, network congestion, impairments of the wireless links (such as bandwidth limitations, packet losses, delays, and noises) may degrade system performance and even cause instability. These issues have motivated a great deal of research over the past 20 years and have given rise to a number of approaches to prevent congestion and compensate for delays and/or packet losses.An interesting class of NCSs that has not received enough attention is an NCS whose systems are uncertain and subject to state and inputs hard constraints.These hard constraints may stem from the system itself, its environment, or be proposed by the designer in order to guarantee safety or a certain performance.The contribution of this thesis is introducing a design framework that guarantees robust constraint satisfaction for a class of multi-agent NCSs with a shared communication medium that is subject to bandwidth limitation and prone to packet losses.The proposed framework is built upon reachability analysis to determine the communication demand for each system such that local constraints are satisfied and scheduling techniques to guarantee satisfaction of the communication demands. The thesis explores offline and online scheduling designs under various communication topologies, optimal control designs under state and output feedback, and scheduling and control co-design for NCSs with hard constraints

    Optimal scheduling and control for constrained multi-agent networked control systems

    Get PDF
    In this paper, we study optimal control and communication schedule co-design for multi-agent networked control systems, with assuming shared parallel communication channels and uncertain constrained linear time-invariant discrete-time systems. To that end, we specify the communication demand for each system using an associated robust control invariant set and reachability analysis. We use these communication demands and invariant sets to formulate tube-based model predictive control and offline/online communication schedule co-design problems. Since the scheduling part includes an infinite dimension integer problem, we propose heuristics to find suboptimal solutions that guarantee robust constraints satisfaction and recursive feasibility. The effectiveness of our approach is illustrated through numerical simulations

    Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Get PDF
    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at http://www.mdpi.org/sensors/papers/s8074265.pd

    Cyber-Physical Co-Design of Wireless Control Systems

    Get PDF
    Wireless sensor-actuator network (WSAN) technology is gaining rapid adoption in process industries because of its advantages in lowering deployment and maintenance cost in challenging environments. While early success of industrial WSANs has been recognized, significant potential remains in exploring WSANs as unified networks for industrial plants. This thesis research explores a cyber-physical co-design approach to design wireless control systems. To enable holistic studies of wireless control systems, we have developed the Wireless Cyber-Physical Simulator (WCPS), an integrated co-simulation environment that integrates Simulink and our implementation of WSANs based on the industrial WirelessHART standard. We further develop novel WSAN protocols tailored for advanced control designs for networked control systems. WCPS now works as the first simulator that features both linear and nonlinear physical plant models, state-of-art WirelessHART protocol stack, and realistic wireless network characteristics. A realistic wireless structural control study sheds light on the challenges of WSC and the limitations of a traditional structural control approach under realistic wireless conditions. Systematic emergency control results demonstrate that our real-time emergency communication approach enables timely emergency handling, while allowing regular feedback control loops to effectively share resources in WSANs during normal operations. A co-joint study of wireless routing and control highlights the importance of the co-design approach of wireless networks and control

    Integration of control, communication, computation, com- plexity and energy considerations in a coherent design strategy

    Get PDF
    This report is an overview of the research activities regarding WP06 (C4E co-design) of the FeedNetBack project. The objective of WP6 of Feed- NetBack is to propose a co-design framework, which allows the integration of control-estimation, communication, computation, complexity, and energy considerations in networked control systems. In this report we outline gen- eral guidelines for co-design and illustrate their applicability to the following case studies: (i) surveillance systems using a network of smart cameras and (ii) eets of Autonomous Underwater Vehicles (AUVs).

    Co-Optimization of Communication, Motion and Sensing in Mobile Robotic Operations

    Get PDF
    In recent years, there has been considerable interest in wireless sensor networks and networked robotic systems. In order to achieve the full potential of such systems, integrative approaches that design the communication, navigation and sensing aspects of the systems simultaneously are needed. However, most of the existing work in the control and robotic communities uses over-simplified disk models or path-loss-only models to characterize the communication in the network, while most of the work in networkingand communication communities does not fully explore the benefits of motion.This dissertation thus focuses on co-optimizing these three aspects simultaneously in realistic communication environments that experience path loss, shadowing and multi-path fading. We show how to integrate the probabilistic channel prediction framework, which allows the robots to predict the channel quality at unvisited locations, into the co-optimization design. In particular, we consider four different scenarios: 1) robotic routerformation, 2) communication and motion energy co-optimization along a pre-defined trajectory, 3) communication and motion energy co-optimization with trajectory planning, and 4) clustering and path planning strategies for robotic data collection. Our theoretical, simulation and experimental results show that the proposed framework considerably outperforms the cases where the communication, motion and sensing aspects of the system are optimized separately, indicating the necessity of co-optimization. They furthershow the significant benefits of using realistic channel models, as compared to the case of using over-simplified disk models

    Stochastic optimal adaptive controller and communication protocol design for networked control systems

    Get PDF
    Networked Control System (NCS) is a recent topic of research wherein the feedback control loops are closed through a real-time communication network. Many design challenges surface in such systems due to network imperfections such as random delays, packet losses, quantization effects and so on. Since existing control techniques are unsuitable for such systems, in this dissertation, a suite of novel stochastic optimal adaptive design methodologies is undertaken for both linear and nonlinear NCS in presence of uncertain system dynamics and unknown network imperfections such as network-induced delays and packet losses. The design is introduced in five papers. In Paper 1, a stochastic optimal adaptive control design is developed for unknown linear NCS with uncertain system dynamics and unknown network imperfections. A value function is adjusted forward-in-time and online, and a novel update law is proposed for tuning value function estimator parameters. Additionally, by using estimated value function, optimal adaptive control law is derived based on adaptive dynamic programming technique. Subsequently, this design methodology is extended to solve stochastic optimal strategies of linear NCS zero-sum games in Paper 2. Since most systems are inherently nonlinear, a novel stochastic optimal adaptive control scheme is then developed in Paper 3 for nonlinear NCS with unknown network imperfections. On the other hand, in Paper 4, the network protocol behavior (e.g. TCP and UDP) are considered and optimal adaptive control design is revisited using output feedback for linear NCS. Finally, Paper 5 explores a co-design framework where both the controller and network scheduling protocol designs are addressed jointly so that proposed scheme can be implemented into next generation Cyber Physical Systems --Abstract, page iv
    • …
    corecore