682,643 research outputs found

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Microglia-derived microvesicles affect microglia phenotype in glioma

    Get PDF
    Extracellular-released vesicles (EVs), such as microvesicles (MV) and exosomes (Exo) provide a new type of inter-cellular communication, directly transferring a ready to use box of information, consisting of proteins, lipids and nucleic acids. In the nervous system, EVs participate to neuron-glial cross-talk, a bidirectional communication important to preserve brain homeostasis and, when dysfunctional, involved in several CNS diseases. We investigated whether microglia-derived EVs could be used to transfer a protective phenotype to dysfunctional microglia in the context of a brain tumor. When MV, isolated from microglia stimulated with LPS/IFNg were brain injected in glioma-bearing mice, we observed a phenotype switch of tumor associated myeloid cells (TAMs) and a reduction of tumor size. Our findings indicate that the MV cargo, which contains upregulated transcripts for several inflammation-related genes, can transfer information in the brain of glioma bearing mice modifying microglial gene expression, reducing neuronal death and glioma invasion, thus promoting the recovery of brain homeostasis

    Are there optical communication channels in the brain?

    Full text link
    Despite great progress in neuroscience, there are still fundamental unanswered questions about the brain, including the origin of subjective experience and consciousness. Some answers might rely on new physical mechanisms. Given that biophotons have been discovered in the brain, it is interesting to explore if neurons use photonic communication in addition to the well-studied electro-chemical signals. Such photonic communication in the brain would require waveguides. Here we review recent work [S. Kumar, K. Boone, J. Tuszynski, P. Barclay, and C. Simon, Scientific Reports 6, 36508 (2016)] suggesting that myelinated axons could serve as photonic waveguides. The light transmission in the myelinated axon was modeled, taking into account its realistic imperfections, and experiments were proposed both in-vivo and in-vitro to test this hypothesis. Potential implications for quantum biology are discussed.Comment: 13 pages, 5 figures, review of arXiv:1607.02969 for Frontiers in Bioscience, updated figures, new references on existence of opsins in the brain and experimental effects of light on neuron

    Navigation of brain networks

    Get PDF
    Understanding the mechanisms of neural communication in large-scale brain networks remains a major goal in neuroscience. We investigated whether navigation is a parsimonious routing model for connectomics. Navigating a network involves progressing to the next node that is closest in distance to a desired destination. We developed a measure to quantify navigation efficiency and found that connectomes in a range of mammalian species (human, mouse and macaque) can be successfully navigated with near-optimal efficiency (>80% of optimal efficiency for typical connection densities). Rewiring network topology or repositioning network nodes resulted in 45%-60% reductions in navigation performance. Specifically, we found that brain networks cannot be progressively rewired (randomized or clusterized) to result in topologies with significantly improved navigation performance. Navigation was also found to: i) promote a resource-efficient distribution of the information traffic load, potentially relieving communication bottlenecks; and, ii) explain significant variation in functional connectivity. Unlike prevalently studied communication strategies in connectomics, navigation does not mandate biologically unrealistic assumptions about global knowledge of network topology. We conclude that the wiring and spatial embedding of brain networks is conducive to effective decentralized communication. Graph-theoretic studies of the connectome should consider measures of network efficiency and centrality that are consistent with decentralized models of neural communication

    Measuring Skilled Migration Rates: The Case of Small States

    Get PDF
    Recent changes in information and communication technologies have contributed to a dramatic increase in the degree of integration and interdependency of countries, markets, and people. Against this background, one aspect of particular concern for small states is the international movement of people. This paper focuses on this particularly important aspect of globalization, with emphasis on the movement of skilled people and its relationship with country size. In addition to overall skilled migration, it provides evidence that controls for migration age in order to distinguish between those educated in the home country and those educated abroad. The authors discuss the growth implications of the brain drain from small countries and policies that may help control it.age structure; aliens; average emigration; average migration; brain; brain drain; brain gain; Census Bureau; Census data; citizen; citizens; citizenship; communication technologies;

    Evidence for Information Processing in the Brain

    Get PDF
    Many cognitive and neuroscientists attempt to assign biological functions to brain structures. To achieve this end, scientists perform experiments that relate the physical properties of brain structures to organism-level abilities, behaviors, and environmental stimuli. Researchers make use of various measuring instruments and methodological techniques to obtain this kind of relational evidence, ranging from single-unit electrophysiology and optogenetics to whole brain functional MRI. Each experiment is intended to identify brain function. However, seemingly independent of experimental evidence, many cognitive scientists, neuroscientists, and philosophers of science assume that the brain processes information as a scientific fact. In this work we analyze categories of relational evidence and find that although physical features of specific brain areas selectively covary with external stimuli and abilities, and that the brain shows reliable causal organization, there is no direct evidence supporting the claim that information processing is a natural function of the brain. We conclude that the belief in brain information processing adds little to the science of cognitive science and functions primarily as a metaphor for efficient communication of neuroscientific data

    A study on temporal segmentation strategies for extracting common spatial patterns for brain computer interfacing

    Get PDF
    Brain computer interfaces (BCI) create a new approach to human computer communication, allowing the user to control a system simply by performing mental tasks such as motor imagery. This paper proposes and analyses different strategies for time segmentation in extracting common spatial patterns of the brain signals associated to these tasks leading to an improvement of BCI performance
    • …
    corecore