37 research outputs found

    KONTUR-2: Force-feedback Teleoperation from the International Space Station

    Get PDF
    This paper presents a new robot controller for space telerobotics missions specially designed to meet the requirements of KONTUR-2, a German & Russian telerobotics mission that addressed scientific and technological questions for future planetary explorations. In KONTUR-2, Earth and ISS have been used as a test-bed to evaluate and demonstrate a new technology for real-time telemanipulation from space. During the August 2015' experiments campaign, a cosmonaut teleoperated a robot manipulator located in Germany, using a force-feedback joystick from the Russian segment of the International Space Station (ISS). The focus of the paper is on the design and performance of the bilateral controller between ISS joystick and Earth robot. The controller is based on a 4-Channels architecture in which stability is guaranteed through passivity and the Time Delay Power Network (TDPN) concept. We show how the proposed approach successfully fulfills mission requirements, specially those related to system operation through space links and internet channels, involving time delays and data losses of different nature

    Space experiment "Kontur-2": Applied methods and obtained results

    Get PDF
    Space experiment "Kontur-2" aboard the International Space Station is focused on the transfer of information between station and on-ground robot. Station's resources are limited, including communication ones. That is why for the space experiment “Kontur-2” it was decided to use the methods of priority traffic management. New access control mechanisms based on these methods are researched. The usage of the priority traffic processing methods allows using more efficiently the bandwidth of receiving and transmitting equipment onboard the International Space Station through the application of randomized push-out mechanism. The paper considers methods applied for traffic management and access control during international space experiment “Kontur-2” performed aboard the ISS. The obtained results are also presented

    Annual Highlights of Results from the International Space Station October 1, 2017 - October 1, 2018

    Get PDF
    The International Space Station (ISS) is a unique place a convergence of science, technology and human innovation that demonstrates new technologies and makes research breakthroughs that cannot be accomplished on Earth. As an international laboratory for scientific research in microgravity, the space stations international crew lives and works while traveling at a speed of about five miles per second as they make new discoveries in the disciplines of biology and biotechnology, Earth and space science, human research, physical science, educational activities, and technology development and demonstrations

    Model-Augmented Haptic Telemanipulation: Concept, Retrospective Overview, and Current Use Cases

    Get PDF
    Certain telerobotic applications, including telerobotics in space, pose particularly demanding challenges to both technology and humans. Traditional bilateral telemanipulation approaches often cannot be used in such applications due to technical and physical limitations such as long and varying delays, packet loss, and limited bandwidth, as well as high reliability, precision, and task duration requirements. In order to close this gap, we research model-augmented haptic telemanipulation (MATM) that uses two kinds of models: a remote model that enables shared autonomous functionality of the teleoperated robot, and a local model that aims to generate assistive augmented haptic feedback for the human operator. Several technological methods that form the backbone of the MATM approach have already been successfully demonstrated in accomplished telerobotic space missions. On this basis, we have applied our approach in more recent research to applications in the fields of orbital robotics, telesurgery, caregiving, and telenavigation. In the course of this work, we have advanced specific aspects of the approach that were of particular importance for each respective application, especially shared autonomy, and haptic augmentation. This overview paper discusses the MATM approach in detail, presents the latest research results of the various technologies encompassed within this approach, provides a retrospective of DLR's telerobotic space missions, demonstrates the broad application potential of MATM based on the aforementioned use cases, and outlines lessons learned and open challenges

    On Realizing Multi-Robot Command through Extending the Knowledge Driven Teleoperation Approach

    Get PDF
    Future crewed planetary missions will strongly depend on the support of crew-assistance robots for setup and inspection of critical assets, such as return vehicles, before and after crew arrival. To efficiently accomplish a high variety of tasks, we envision the use of a heterogeneous team of robots to be commanded on various levels of autonomy. This work presents an intuitive and versatile command concept for such robot teams using a multi-modal Robot Command Terminal (RCT) on board a crewed vessel. We employ an object-centered prior knowledge management that stores the information on how to deal with objects around the robot. This includes knowledge on detecting, reasoning on, and interacting with the objects. The latter is organized in the form of Action Templates (ATs), which allow for hybrid planning of a task, i.e. reasoning on the symbolic and the geometric level to verify the feasibility and find a suitable parameterization of the involved actions. Furthermore, by also treating the robots as objects, robot-specific skillsets can easily be integrated by embedding the skills in ATs. A Multi-Robot World State Representation (MRWSR) is used to instantiate actual objects and their properties. The decentralized synchronization of the MRWSR of multiple robots supports task execution when communication between all participants cannot be guaranteed. To account for robot-specific perception properties, information is stored independently for each robot, and shared among all participants. This enables continuous robot- and command-specific decision on which information to use to accomplish a task. A Mission Control instance allows to tune the available command possibilities to account for specific users, robots, or scenarios. The operator uses an RCT to command robots based on the object-based knowledge representation, whereas the MRWSR serves as a robot-agnostic interface to the planetary assets. The selection of a robot to be commanded serves as top-level filter for the available commands. A second filter layer is applied by selecting an object instance. These filters reduce the multitude of available commands to an amount that is meaningful and handleable for the operator. Robot-specific direct teleoperation skills are accessible via their respective AT, and can be mapped dynamically to available input devices. Using AT-specific parameters provided by the robot for each input device allows a robot-agnostic usage, as well as different control modes e.g. velocity, model-mediated, or domain-based passivity control based on the current communication characteristics. The concept will be evaluated on board the ISS within the Surface Avatar experiments

    Extending the Knowledge Driven Approach for Scalable Autonomy Teleoperation of a Robotic Avatar

    Get PDF
    Crewed missions to celestial bodies such as Moon and Mars are in the focus of an increasing number of space agencies. Precautions to ensure a safe landing of the crew on the extraterrestrial surface, as well as reliable infrastructure on the remote location, for bringing the crew back home are key considerations for mission planning. The European Space Agency (ESA) identified in its Terrae Novae 2030+ roadmap, that robots are needed as precursors and scouts to ensure the success of such missions. An important role these robots will play, is the support of the astronaut crew in orbit to carry out scientific work, and ultimately ensuring nominal operation of the support infrastructure for astronauts on the surface. The METERON SUPVIS Justin ISS experiments demonstrated that supervised autonomy robot command can be used for executing inspection, maintenance and installation tasks using a robotic co-worker on the planetary surface. The knowledge driven approach utilized in the experiments only reached its limits when situations arise that were not anticipated by the mission design. In deep space scenarios, the astronauts must be able to overcome these limitations. An approach towards more direct command of a robot was demonstrated in the METERON ANALOG-1 ISS experiment. In this technical demonstration, an astronaut used haptic telepresence to command a robotic avatar on the surface to execute sampling tasks. In this work, we propose a system that combines supervised autonomy and telepresence by extending the knowledge driven approach. The knowledge management is based on organizing the prior knowledge of the robot in an object-centered context. Action Templates are used to define the knowledge on the handling of the objects on a symbolic and geometric level. This robot-agnostic system can be used for supervisory command of any robotic coworker. By integrating the robot itself as an object into the object-centered domain, robot-specific skills and (tele-)operation modes can be injected into the existing knowledge management system by formulating respective Action Templates. In order to efficiently use advanced teleoperation modes, such as haptic telepresence, a variety of input devices are integrated into the proposed system. This work shows how the integration of these devices is realized in a way that is agnostic to the input devices and operation modes. The proposed system is evaluated in the Surface Avatar ISS experiment. This work shows how the system is integrated into a Robot Command Terminal featuring a 3-Degree-of-Freedom Joystick and a 7-Degree-of-Freedom haptic input device in the Columbus module of the ISS. In the preliminary experiment sessions of Surface Avatar, two astronauts on orbit took command of the humanoid service robot Rollin' Justin in Germany. This work presents and discusses the results of these ISS-to-ground sessions and derives requirements for extending the scalable autonomy system for the use with a heterogeneous robotic team

    Haptic Bimanual System for Teleoperation of Time-Delayed Tasks

    Get PDF

    Advancing Space Robotics with the EtherCAT Communication Standard

    Get PDF
    Space-specific communication technologies meet the demanding technical requirements of next gen space robotics only partially while showing disadvantages in terms of the strategic requirements for cost, openness and vendor diversity. EtherCAT is considered to be the most widely used Ethernet-based standard for motion communication, and it is also widely used in robotics. In this paper, we will describe how the EtherCAT technology meets the specific requirements of space robotics. In addition, we intend to show how the space industry benefits from agreeing on this technology for robotics

    Haptic Bimanual System for Teleoperation of Time-Delayed Tasks

    Get PDF
    This paper presents a novel teleoperation system, which has been designed to address challenges in the remote control of spaceborne bimanual robotic tasks. The primary interest for designing this system is to assess and increase the efficacy of users performing bimanual tasks, while ensuring the safety of the system and minimising the user's mental load. This system consists of two seven-axis robots that are remotely controlled through two haptic control interfaces. The mental load of the user is monitored using a head-mounted interface, which collects eye gaze data and provides components for the holographic user interface. The development of this system enables the safe execution of tasks remotely, which is a critical building block for developing and deploying future space missions as well as other high-risk tasks

    Multi-DoF Time Domain Passivity Approach Based Drift Compensation for Telemanipulation

    Get PDF
    When, in addition to stability, position synchronization is also desired in bilateral teleoperation, Time Domain Passivity Approach (TDPA) alone might not be able to fulfill the desired objective. This is due to an undesired effect caused by admittance type passivity controllers, namely position drift. Previous works focused on developing TDPA-based drift compensation methods to solve this issue. It was shown that, in addition to reducing drift, one of the proposed methods was able to keep the force signals within their normal range, guaranteeing the safety of the task. However, no multi-DoF treatment of those approaches has been addressed. In that scope, this paper focuses on providing an extension of previous TDPA-based approaches to multi-DoF Cartesian-space teleoperation. An analysis of the convergence properties of the presented method is also provided. In addition, its applicability to multi-DoF devices is shown through hardware experiments and numerical simulation with round-trip time delays up to 700 ms.Comment: 2019 19th International Conference on Advanced Robotics (ICAR
    corecore