7,946 research outputs found

    An anonymity layer for JXTA service

    Get PDF
    Open Access Documen

    An identity-based key infrastructure suitable for messaging applications

    Get PDF
    Abstract—Identity-based encryption (IBE) systems are relatively recently proposed; yet they are highly popular for messaging applications since they offer new features such as certificateless infrastructure and anonymous communication. In this paper, we intended to propose an IBE infrastructure for messaging applications. The proposed infrastructure requires one registration authority and at least one public key generator and they secret share the master secret key. In addition, the PKG also shares the same master secret with each user in the system in a different way. Therefore, the PKG will never be able to learn the private keys of users under non-collusion assumption. We discuss different aspects of the proposed infrastructure such as security, key revocation, uniqueness of the identities that constitute the main drawbacks of other IBE schemes. We demonstrate that our infrastructure solves many of these drawbacks under certain assumptions

    HORNET: High-speed Onion Routing at the Network Layer

    Get PDF
    We present HORNET, a system that enables high-speed end-to-end anonymous channels by leveraging next generation network architectures. HORNET is designed as a low-latency onion routing system that operates at the network layer thus enabling a wide range of applications. Our system uses only symmetric cryptography for data forwarding yet requires no per-flow state on intermediate nodes. This design enables HORNET nodes to process anonymous traffic at over 93 Gb/s. HORNET can also scale as required, adding minimal processing overhead per additional anonymous channel. We discuss design and implementation details, as well as a performance and security evaluation.Comment: 14 pages, 5 figure

    Dining Cryptographers with 0.924 Verifiable Collision Resolution

    Get PDF
    The dining cryptographers protocol implements a multiple access channel in which senders and recipients are anonymous. A problem is that a malicious participant can disrupt communication by deliberately creating collisions. We propose a computationally secure dining cryptographers protocol with collision resolution that achieves a maximum stable throughput of 0.924 messages per round and which allows to easily detect disruptors.Comment: 11 pages, 3 figure
    • 

    corecore