9,429 research outputs found

    A review on massive e-learning (MOOC) design, delivery and assessment

    Get PDF
    MOOCs or Massive Online Open Courses based on Open Educational Resources (OER) might be one of the most versatile ways to offer access to quality education, especially for those residing in far or disadvantaged areas. This article analyzes the state of the art on MOOCs, exploring open research questions and setting interesting topics and goals for further research. Finally, it proposes a framework that includes the use of software agents with the aim to improve and personalize management, delivery, efficiency and evaluation of massive online courses on an individual level basis.Peer ReviewedPostprint (author's final draft

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstractā€” this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game playerā€™s perception; (ii) the game designersā€™ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    Evaluation of social personalized adaptive E-Learning environments : end-user point of view

    Get PDF
    The use of adaptations, along with the social aļ¬€ordances of collaboration and networking, carries a great potential for improving e-learning experiences. However, the review of the previous work indicates current e-learning systems have only marginally explored the integration of social features and adaptation techniques. The overall aim of this research, therefore, is to address this gap by evaluating a system developed to foster social personalized adaptive e-learning experiences. We have developed our ļ¬rst prototype system, Topolor, based on the concepts of Adaptive Educational Hypermedia and Social E-Learning. We have also conducted an experimental case study for the evaluation of the prototype system from diļ¬€erent perspectives. The results show a considerably high satisfaction of the end users. This paper reports the evaluation results from end user point of view, and generalizes our method to a component-based evaluation framework

    Logistic Knowledge Tracing: A Constrained Framework for Learner Modeling

    Full text link
    Adaptive learning technology solutions often use a learner model to trace learning and make pedagogical decisions. The present research introduces a formalized methodology for specifying learner models, Logistic Knowledge Tracing (LKT), that consolidates many extant learner modeling methods. The strength of LKT is the specification of a symbolic notation system for alternative logistic regression models that is powerful enough to specify many extant models in the literature and many new models. To demonstrate the generality of LKT, we fit 12 models, some variants of well-known models and some newly devised, to 6 learning technology datasets. The results indicated that no single learner model was best in all cases, further justifying a broad approach that considers multiple learner model features and the learning context. The models presented here avoid student-level fixed parameters to increase generalizability. We also introduce features to stand in for these intercepts. We argue that to be maximally applicable, a learner model needs to adapt to student differences, rather than needing to be pre-parameterized with the level of each student's ability

    The future of technology enhanced active learning ā€“ a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Intelligence Unleashed: An argument for AI in Education

    Get PDF
    • ā€¦
    corecore