671 research outputs found

    Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction

    Full text link
    A simple scheme for communication over MIMO broadcast channels is introduced which adopts the lattice reduction technique to improve the naive channel inversion method. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. Simulation results show that the proposed scheme performs well, and as compared to the more complex methods (such as the perturbation method) has a negligible loss. Moreover, the proposed method is extended to the case of different rates for different users. The asymptotic behavior of the symbol error rate of the proposed method and the perturbation technique, and also the outage probability for the case of fixed-rate users is analyzed. It is shown that the proposed method, based on LLL lattice reduction, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). Also, the outage probability for the case of fixed sum-rate is analyzed.Comment: Submitted to IEEE Trans. on Info. Theory (Jan. 15, 2006), Revised (Jun. 12, 2007

    Lattice-Based Precoding And Decoding in MIMO Fading Systems

    Get PDF
    In this thesis, different aspects of lattice-based precoding and decoding for the transmission of digital and analog data over MIMO fading channels are investigated: 1) Lattice-based precoding in MIMO broadcast systems: A new viewpoint for adopting the lattice reduction in communication over MIMO broadcast channels is introduced. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. The new viewpoint helps us to generalize the idea of lattice-reduction-aided precoding for the case of unequal-rate transmission, and obtain analytic results for the asymptotic behavior of the symbol-error-rate for the lattice-reduction-aided precoding and the perturbation technique. Also, the outage probability for both cases of fixed-rate users and fixed sum-rate is analyzed. It is shown that the lattice-reduction-aided method, using LLL algorithm, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). 2) Lattice-based decoding in MIMO multiaccess systems and MIMO point-to-point systems: Diversity order and diversity-multiplexing tradeoff are two important measures for the performance of communication systems over MIMO fading channels. For the case of MIMO multiaccess systems (with single-antenna transmitters) or MIMO point-to-point systems with V-BLAST transmission scheme, it is proved that lattice-reduction-aided decoding achieves the maximum receive diversity (which is equal to the number of receive antennas). Also, it is proved that the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum diversity in V-BLAST systems. On the other hand, the inherent drawbacks of the naive lattice decoding for general MIMO fading systems is investigated. It is shown that using the naive lattice decoding for MIMO systems has considerable deficiencies in terms of the diversity-multiplexing tradeoff. Unlike the case of maximum-likelihood decoding, in this case, even the perfect lattice space-time codes which have the non-vanishing determinant property can not achieve the optimal diversity-multiplexing tradeoff. 3) Lattice-based analog transmission over MIMO fading channels: The problem of finding a delay-limited schemes for sending an analog source over MIMO fading channels is investigated in this part. First, the problem of robust joint source-channel coding over an additive white Gaussian noise channel is investigated. A new scheme is proposed which achieves the optimal slope for the signal-to-distortion-ratio (SDR) curve (unlike the previous known coding schemes). Then, this idea is extended to MIMO channels to construct lattice-based codes for joint source-channel coding over MIMO channels. Also, similar to the diversity-multiplexing tradeoff, the asymptotic performance of MIMO joint source-channel coding schemes is characterized, and a concept called diversity-fidelity tradeoff is introduced in this thesis

    Sum Rates, Rate Allocation, and User Scheduling for Multi-User MIMO Vector Perturbation Precoding

    Full text link
    This paper considers the multiuser multiple-input multiple-output (MIMO) broadcast channel. We consider the case where the multiple transmit antennas are used to deliver independent data streams to multiple users via vector perturbation. We derive expressions for the sum rate in terms of the average energy of the precoded vector, and use this to derive a high signal-to-noise ratio (SNR) closed-form upper bound, which we show to be tight via simulation. We also propose a modification to vector perturbation where different rates can be allocated to different users. We conclude that for vector perturbation precoding most of the sum rate gains can be achieved by reducing the rate allocation problem to the user selection problem. We then propose a low-complexity user selection algorithm that attempts to maximize the high-SNR sum rate upper bound. Simulations show that the algorithm outperforms other user selection algorithms of similar complexity.Comment: 27 pages with 6 figures and 2 tables. Accepted for publication in IEEE Trans. Wireless Comm

    Integer-Forcing MIMO Linear Receivers Based on Lattice Reduction

    Full text link
    A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a part of the decoding process. In this paper, we propose a method based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice basis reduction algorithms to obtain the integer coefficients for the IF receiver. We show that the proposed method provides a lower bound on the ergodic rate, and achieves the full receive diversity. Suitability of complex Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm (CLLL) to solve the problem is also investigated. Furthermore, we establish the connection between the proposed IF linear receivers and lattice reduction-aided MIMO detectors (with equivalent complexity), and point out the advantages of the former class of receivers over the latter. For the 2×22 \times 2 and 4×44\times 4 MIMO channels, we compare the coded-block error rate and bit error rate of the proposed approach with that of other linear receivers. Simulation results show that the proposed approach outperforms the zero-forcing (ZF) receiver, minimum mean square error (MMSE) receiver, and the lattice reduction-aided MIMO detectors.Comment: 9 figures and 11 pages. Modified the title, abstract and some parts of the paper. Major change from v1: Added new results on applicability of the CLLL reductio
    • …
    corecore