16,899 research outputs found

    Communication Efficient Distributed Optimization using an Approximate Newton-type Method

    Full text link
    We present a novel Newton-type method for distributed optimization, which is particularly well suited for stochastic optimization and learning problems. For quadratic objectives, the method enjoys a linear rate of convergence which provably \emph{improves} with the data size, requiring an essentially constant number of iterations under reasonable assumptions. We provide theoretical and empirical evidence of the advantages of our method compared to other approaches, such as one-shot parameter averaging and ADMM

    GIANT: Globally Improved Approximate Newton Method for Distributed Optimization

    Full text link
    For distributed computing environment, we consider the empirical risk minimization problem and propose a distributed and communication-efficient Newton-type optimization method. At every iteration, each worker locally finds an Approximate NewTon (ANT) direction, which is sent to the main driver. The main driver, then, averages all the ANT directions received from workers to form a {\it Globally Improved ANT} (GIANT) direction. GIANT is highly communication efficient and naturally exploits the trade-offs between local computations and global communications in that more local computations result in fewer overall rounds of communications. Theoretically, we show that GIANT enjoys an improved convergence rate as compared with first-order methods and existing distributed Newton-type methods. Further, and in sharp contrast with many existing distributed Newton-type methods, as well as popular first-order methods, a highly advantageous practical feature of GIANT is that it only involves one tuning parameter. We conduct large-scale experiments on a computer cluster and, empirically, demonstrate the superior performance of GIANT.Comment: Fixed some typos. Improved writin
    • …
    corecore