1,464 research outputs found

    Capacity Enhancement of Multiuser Wireless Communication System through Adaptive Non-Linear Pre coding

    Get PDF
    Multiuser multiple-input multiple-output (MIMO) nonlinear pre coding techniques face the issue of poor computational scalability of the size of the network. But by this nonlinear pre coding technique the interference is pre-cancelled automatically and also provides better capacity. So in order to reduce the computational burden in this paper, a definitive issue of MU-MIMO scalability is tackled through a non-linear adaptive optimum vector perturbation technique. Unlike the conventional (Vector Perturbation) VP methods, here a novel anterograde tracing is utilized which is usually recognized in the nervous system thus reducing complexity. The tracing of distance can be done through an iterative-optimization procedure. By this novel non-linear technique the capacity is improved to a greater extend which is explained practically. By means of this, the computational complexity is managed to be in the cubic order of the size of MUMIMO, and this mainly derives from the inverse of the channel matrix. The proposed signal processing system has been implemented in the working platform of MATLAB/SIMULINK. The simulation results of proposed communication system and comparison with existing systems shows the significance of the proposed work

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    5G embraces satellites for 6G ubiquitous IoT : basic models for integrated satellite terrestrial networks

    Get PDF
    Terrestrial communication networks mainly focus on users in urban areas but have poor coverage performance in harsh environments, such as mountains, deserts, and oceans. Satellites can be exploited to extend the coverage of terrestrial fifth-generation (5G) networks. However, satellites are restricted by their high latency and relatively low data rate. Consequently, the integration of terrestrial and satellite components has been widely studied, to take advantage of both sides and enable the seamless broadband coverage. Due to the significant differences between satellite communications (SatComs) and terrestrial communications (TerComs) in terms of channel fading, transmission delay, mobility, and coverage performance, the establishment of an efficient hybrid satellite-terrestrial network (HSTN) still faces many challenges. In general, it is difficult to decompose a HSTN into a sum of separate satellite and terrestrial links due to the complicated coupling relationships therein. To uncover the complete picture of HSTNs, we regard the HSTN as a combination of basic cooperative models that contain the main traits of satellite-terrestrial integration but are much simpler and thus more tractable than the large-scale heterogeneous HSTNs. In particular, we present three basic cooperative models, i.e., model X, model L, and model V, and provide a survey of the state-of-the-art technologies for each of them. We discuss future research directions towards establishing a cell-free, hierarchical, decoupled HSTN. We also outline open issues to envision an agile, smart, and secure HSTN for the sixth-generation (6G) ubiquitous Internet of Things (IoT)

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components
    • …
    corecore