4,479 research outputs found

    A Persistent Simulation Environment for Autonomous Systems

    Get PDF
    The age of Autonomous Unmanned Aircraft Systems (AUAS) is creating new challenges for the accreditation and certification requiring new standards, policies and procedures that sanction whether a UAS is safe to fly. Establishing a basis for certification of autonomous systems via research into trust and trustworthiness is the focus of Autonomy Teaming and TRAjectories for Complex Trusted Operational Reliability (ATTRACTOR), a new NASA Convergent Aeronautics Solution (CAS) project. Simulation Environments to test and evaluate AUAS decision making may be a low-cost solution to help certify that various AUAS systems are trustworthy enough to be allowed to fly in current general and commercial aviation airspace. NASA is working to build a peer-to-peer persistent simulation (P3 Sim) environment. The P3 Sim will be a Massively Multiplayer Online (MMO) environment were AUAS avatars can interact with a complex dynamic environment and each other. The focus of the effort is to provide AUAS researchers a low-cost intuitive testing environment that will aid training for and assessment of decisions made by autonomous systems such as AUAS. This presentation focuses on the design approach and challenges faced in development of the P3 Sim Environment is support of investigating trustworthiness of autonomous systems

    Echo State Learning for Wireless Virtual Reality Resource Allocation in UAV-enabled LTE-U Networks

    Full text link
    In this paper, the problem of resource management is studied for a network of wireless virtual reality (VR) users communicating using an unmanned aerial vehicle (UAV)-enabled LTE-U network. In the studied model, the UAVs act as VR control centers that collect tracking information from the VR users over the wireless uplink and, then, send the constructed VR images to the VR users over an LTE-U downlink. Therefore, resource allocation in such a UAV-enabled LTE-U network must jointly consider the uplink and downlink links over both licensed and unlicensed bands. In such a VR setting, the UAVs can dynamically adjust the image quality and format of each VR image to change the data size of each VR image, then meet the delay requirement. Therefore, resource allocation must also take into account the image quality and format. This VR-centric resource allocation problem is formulated as a noncooperative game that enables a joint allocation of licensed and unlicensed spectrum bands, as well as a dynamic adaptation of VR image quality and format. To solve this game, a learning algorithm based on the machine learning tools of echo state networks (ESNs) with leaky integrator neurons is proposed. Unlike conventional ESN based learning algorithms that are suitable for discrete-time systems, the proposed algorithm can dynamically adjust the update speed of the ESN's state and, hence, it can enable the UAVs to learn the continuous dynamics of their associated VR users. Simulation results show that the proposed algorithm achieves up to 14% and 27.1% gains in terms of total VR QoE for all users compared to Q-learning using LTE-U and Q-learning using LTE

    LVC Interaction within a Mixed Reality Training System

    Get PDF
    The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems

    UAS in the Airspace: A Review on Integration, Simulation, Optimization, and Open Challenges

    Full text link
    Air transportation is essential for society, and it is increasing gradually due to its importance. To improve the airspace operation, new technologies are under development, such as Unmanned Aircraft Systems (UAS). In fact, in the past few years, there has been a growth in UAS numbers in segregated airspace. However, there is an interest in integrating these aircraft into the National Airspace System (NAS). The UAS is vital to different industries due to its advantages brought to the airspace (e.g., efficiency). Conversely, the relationship between UAS and Air Traffic Control (ATC) needs to be well-defined due to the impacts on ATC capacity these aircraft may present. Throughout the years, this impact may be lower than it is nowadays because the current lack of familiarity in this relationship contributes to higher workload levels. Thereupon, the primary goal of this research is to present a comprehensive review of the advancements in the integration of UAS in the National Airspace System (NAS) from different perspectives. We consider the challenges regarding simulation, final approach, and optimization of problems related to the interoperability of such systems in the airspace. Finally, we identify several open challenges in the field based on the existing state-of-the-art proposals

    Can Urban Air Mobility become reality? Opportunities, challenges and selected research results

    Full text link
    Urban Air Mobility (UAM) is a new air transportation system for passengers and cargo in urban environments, enabled by new technologies and integrated into multimodal transportation systems. The vision of UAM comprises the mass use in urban and suburban environments, complementing existing transportation systems and contributing to the decarbonization of the transport sector. Initial attempts to create a market for urban air transportation in the last century failed due to lack of profitability and community acceptance. Technological advances in numerous fields over the past few decades have led to a renewed interest in urban air transportation. UAM is expected to benefit users and to also have a positive impact on the economy by creating new markets and employment opportunities for manufacturing and operation of UAM vehicles and the construction of related ground infrastructure. However, there are also concerns about noise, safety and security, privacy and environmental impacts. Therefore, the UAM system needs to be designed carefully to become safe, affordable, accessible, environmentally friendly, economically viable and thus sustainable. This paper provides an overview of selected key research topics related to UAM and how the German Aerospace Center (DLR) contributed to this research in the project "HorizonUAM - Urban Air Mobility Research at the German Aerospace Center (DLR)". Selected research results that support the realization of the UAM vision are briefly presented.Comment: 20 pages, 7 figures, project HorizonUA

    SciTech News Volume 70, No. 4 (2016)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 4 SLA Annual Meeting 2016 Report (S. Kirk Cabeen Travel Stipend Award recipient) 6 Reflections on SLA Annual Meeting (Diane K. Foster International Student Travel Award recipient) 8 SLA Annual Meeting Report (Bonnie Hilditch International Librarian Award recipient)10 Chemistry Division 12 Engineering Division 15 Reflections from the 2016 SLA Conference (SPIE Digital Library Student Travel Stipend recipient)15 Fundamentals of Knowledge Management and Knowledge Services (IEEE Continuing Education Stipend recipient) 17 Makerspaces in Libraries: The Big Table, the Art Studio or Something Else? (by Jeremy Cusker) 19 Aerospace Section of the Engineering Division 21 Reviews Sci-Tech Book News Reviews 22 Advertisements IEEE 17 WeBuyBooks.net 2

    Multiple UAV systems: a survey

    Get PDF
    Nowadays, Unmanned Aerial Vehicles (UAVs) are used in many different applications. Using systems of multiple UAVs is the next obvious step in the process of applying this technology for variety of tasks. There are few research works that cover the applications of these systems and they are all highly specialized. The goal of this survey is to fill this gap by providing a generic review on different applications of multiple UAV systems that have been developed in recent years. We also present a nomenclature and architecture taxonomy for these systems. In the end, a discussion on current trends and challenges is provided.This work was funded by the Ministry of Economy, Industryand Competitiveness of Spain under Grant Nos. TRA2016-77012-R and BES-2017-079798Peer ReviewedPostprint (published version
    • …
    corecore