784 research outputs found

    Distributed Control of a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    With the increasing use of Unmanned Aerial Vehicles (UAV)s military operations, there is a growing need to develop new methods of control and navigation for these vehicles. This investigation proposes the use of an adaptive swarming algorithm that utilizes local state information to influence the overall behavior of each individual agent in the swarm based upon the agent\u27s current position in the battlespace. In order to investigate the ability of this algorithm to control UAVs in a cooperative manner, a swarm architecture is developed that allows for on-line modification of basic rules. Adaptation is achieved by using a set of behavior coefficients that define the weight at which each of four basic rules is asserted in an individual based upon local state information. An Evolutionary Strategy (ES) is employed to create initial metrics of behavior coefficients. Using this technique, three distinct emergent swarm behaviors are evolved, and each behavior is investigated in terms of the ability of the adaptive swarming algorithm to achieve the desired emergent behavior by modifying the simple rules of each agent. Finally, each of the three behaviors is analyzed visually using a graphical representation of the simulation, and numerically, using a set of metrics developed for this investigation

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Unmanned vehicles formation control in 3D space and cooperative search

    Get PDF
    The first problem considered in this dissertation is the decentralized non-planar formation control of multiple unmanned vehicles using graph rigidity. The three-dimensional formation control problem consists of n vehicles operating in a plane Q and r vehicles that operate in an upper layer outside of the plane Q. This can be referred to as a layered formation control where the objective is for all vehicles to cooperatively acquire a predefined formation shape using a decentralized control law. The proposed control strategy is based on regulating the inter-vehicle distances and uses backstepping and Lyapunov approaches. Three different models, with increasing level of complexity are considered for the multi-vehicle system: the single integrator vehicle model, the double integrator vehicle model, and a model that represents the dynamics of a class of robotics vehicles including wheeled mobile robots, underwater vehicles with constant depth, aircraft with constant altitude, and marine vessels. A rigorous stability analysis is presented that guarantees convergence of the inter-vehicle distances to desired values. Additionally, a new Neural Network (NN)-based control algorithm that uses graph rigidity and relative positions of the vehicles is proposed to solve the formation control problem of unmanned vehicles in 3D space. The control law for each vehicle consists of a nonlinear component that is dependent on the closed-loop error dynamics plus a NN component that is linear in the output weights (a one-tunable layer NN is used). A Lyapunov analysis shows that the proposed distance-based control strategy achieves the uniformly ultimately bounded stability of the desired infinitesimally and minimally rigid formation and that NN weights remain bounded. Simulation results are included to demonstrate the performance of the proposed method. The second problem addressed in this dissertation is the cooperative unmanned vehicles search. In search and surveillance operations, deploying a team of unmanned vehicles provides a robust solution that has multiple advantages over using a single vehicle in efficiency and minimizing exploration time. The cooperative search problem addresses the challenge of identifying target(s) in a given environment when using a team of unmarried vehicles by proposing a novel method of mapping and movement of vehicle teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, the vehicles have an efficient travel path while performing searches due to this partitioning approach. Second, a team of unmanned vehicles that move in a cooperative manner and utilize the Tabu Random algorithm is used to search for target(s). Due to the ever-increasing use of robotics and unmanned systems, the field of cooperative multi-vehicle search has developed many applications recently that would benefit from the use of the approach presented in this dissertation, including: search and rescue operations, surveillance, data collection, and border patrol. Simulation results are presented that show the performance of the Tabu Random search algorithm method in combination with hexagonal partitioning

    A Localized Autonomous Control Algorithm For Robots With Heterogeneous Capabilities In A Multi-Tier Architecture

    Get PDF
    This dissertation makes two contributions to the use of the Blackboard Architecture for command. The use of boundary nodes for data abstraction is introduced and the use of a solver-based blackboard system with pruning is proposed. It also makes contributions advancing the engineering design process in the area of command system selection for heterogeneous robotic systems. It presents and analyzes data informing decision making between centralized and distributed command systems and also characterizes the efficacy of pruning across different experimental scenarios, demonstrating when it is effective or not. Finally, it demonstrates the operations of the system, raising the technology readiness level (TRL) of the technology towards a level suitable for actual mission use. The context for this work is a multi-tier mission architecture, based on prior work by Fink on a “tier scalable” architecture. This work took a top-down approach where the superior tiers (in terms of scope of visibility) send specific commands to craft in lower tiers. While benefitting from the use of a large centralized processing center, this approach is limited in responding to failures and interference. The work presented herein has involved developing and comparatively characterizing centralized and decentralized (where superior nodes provide information and goals to the lower-level craft, but decisions are made locally) Blackboard Architecture based command systems. Blackboard Architecture advancements (a solver, pruning, boundary nodes) have been made and tested under multiple experimental conditions

    Metacognitive Decision Making Framework for Multi-UAV Target Search Without Communication

    Full text link
    This paper presents a new Metacognitive Decision Making (MDM) framework inspired by human-like metacognitive principles. The MDM framework is incorporated in unmanned aerial vehicles (UAVs) deployed for decentralized stochastic search without communication for detecting stationary targets (fixed/sudden pop-up) and dynamic targets. The UAVs are equipped with multiple sensors (varying sensing capability) and search for targets in a largely unknown area. The MDM framework consists of a metacognitive component and a self-cognitive component. The metacognitive component helps to self-regulate the search with multiple sensors addressing the issues of "which-sensor-to-use", "when-to-switch-sensor", and "how-to-search". Each sensor possesses inverse characteristics for the sensing attributes like sensing range and accuracy. Based on the information gathered by multiple sensors carried by each UAV, the self-cognitive component regulates different levels of stochastic search and switching levels for effective searching. The lower levels of search aim to localize the search space for the possible presence of a target (detection) with different sensors. The highest level of a search exploits the search space for target confirmation using the sensor with the highest accuracy among all sensors. The performance of the MDM framework with two sensors having low accuracy with wide range sensor for detection and increased accuracy with low range sensor for confirmation is evaluated through Monte-Carlo simulations and compared with six multi-UAV stochastic search algorithms (three self-cognitive searches and three self and social-cognitive based search). The results indicate that the MDM framework is efficient in detecting and confirming targets in an unknown environment.Comment: 12 pages, 9 figures, 9 table

    Comprehensive study: machine learning approaches for COVID-19 diagnosis

    Get PDF
    Coronavirus disease 2019 (COVID-19) is caused a large number of death since has declared as an international pandemic in December 2019, and it is spreading all over the world (more than 200 countries). This situation puts the health organizations in an aberrant demand for urgent needs to develop significant early detection and monitoring smart solutions. Therefore, that new system or solution might be capable to identify COVID-19 quickly and accurately. Nowadays, the science of artificial intelligence (AI), and internet of things (IoT) techniques have an extensive range of applications, it can be initiated a possible solution for early detection and accurate decisions. We believe, combine both of the IoT revolution and machine learning (ML) methods are expected to reshape healthcare treatment strategies to provide smart (diagnosis, treatments, monitoring, and hospitals). This work aims to overview the recent solutions that have been used for early detection, and to provide the researchers a comprehensive summary that contribute to the pandemic control such AI, IoT, cloud, fog, algorithms, and all the dataset and their sources that recently published. In addition, all models, frameworks, monitoring systems, devices, and ideas (in four sections) have been sufficiently presented with all clarifications and justifications. Also, we propose a new vision for early detection based on IoT sensors data entry using 1 million patients-data to verify three proposed methods

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai
    corecore