655 research outputs found

    Multi-grained Evidence Inference for Multi-choice Reading Comprehension

    Full text link
    Multi-choice Machine Reading Comprehension (MRC) is a major and challenging task for machines to answer questions according to provided options. Answers in multi-choice MRC cannot be directly extracted in the given passages, and essentially require machines capable of reasoning from accurate extracted evidence. However, the critical evidence may be as simple as just one word or phrase, while it is hidden in the given redundant, noisy passage with multiple linguistic hierarchies from phrase, fragment, sentence until the entire passage. We thus propose a novel general-purpose model enhancement which integrates multi-grained evidence comprehensively, named Multi-grained evidence inferencer (Mugen), to make up for the inability. Mugen extracts three different granularities of evidence: coarse-, middle- and fine-grained evidence, and integrates evidence with the original passages, achieving significant and consistent performance improvement on four multi-choice MRC benchmarks.Comment: Accepted by TASLP 2023, vol. 31, pp. 3896-390

    Rationalization for Explainable NLP: A Survey

    Get PDF
    Recent advances in deep learning have improved the performance of many Natural Language Processing (NLP) tasks such as translation, question-answering, and text classification. However, this improvement comes at the expense of model explainability. Black-box models make it difficult to understand the internals of a system and the process it takes to arrive at an output. Numerical (LIME, Shapley) and visualization (saliency heatmap) explainability techniques are helpful; however, they are insufficient because they require specialized knowledge. These factors led rationalization to emerge as a more accessible explainable technique in NLP. Rationalization justifies a model's output by providing a natural language explanation (rationale). Recent improvements in natural language generation have made rationalization an attractive technique because it is intuitive, human-comprehensible, and accessible to non-technical users. Since rationalization is a relatively new field, it is disorganized. As the first survey, rationalization literature in NLP from 2007-2022 is analyzed. This survey presents available methods, explainable evaluations, code, and datasets used across various NLP tasks that use rationalization. Further, a new subfield in Explainable AI (XAI), namely, Rational AI (RAI), is introduced to advance the current state of rationalization. A discussion on observed insights, challenges, and future directions is provided to point to promising research opportunities

    Knowledge-driven Data Construction for Zero-shot Evaluation in Commonsense Question Answering

    Full text link
    Recent developments in pre-trained neural language modeling have led to leaps in accuracy on commonsense question-answering benchmarks. However, there is increasing concern that models overfit to specific tasks, without learning to utilize external knowledge or perform general semantic reasoning. In contrast, zero-shot evaluations have shown promise as a more robust measure of a model's general reasoning abilities. In this paper, we propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks. Guided by a set of hypotheses, the framework studies how to transform various pre-existing knowledge resources into a form that is most effective for pre-training models. We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks. Extending on prior work, we devise and compare four constrained distractor-sampling strategies. We provide empirical results across five commonsense question-answering tasks with data generated from five external knowledge resources. We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks. In addition, both preserving the structure of the task as well as generating fair and informative questions help language models learn more effectively.Comment: AAAI 202
    • …
    corecore