5,581 research outputs found

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    High Performance Reconfigurable Computing for Linear Algebra: Design and Performance Analysis

    Get PDF
    Field Programmable Gate Arrays (FPGAs) enable powerful performance acceleration for scientific computations because of their intrinsic parallelism, pipeline ability, and flexible architecture. This dissertation explores the computational power of FPGAs for an important scientific application: linear algebra. First of all, optimized linear algebra subroutines are presented based on enhancements to both algorithms and hardware architectures. Compared to microprocessors, these routines achieve significant speedup. Second, computing with mixed-precision data on FPGAs is proposed for higher performance. Experimental analysis shows that mixed-precision algorithms on FPGAs can achieve the high performance of using lower-precision data while keeping higher-precision accuracy for finding solutions of linear equations. Third, an execution time model is built for reconfigurable computers (RC), which plays an important role in performance analysis and optimal resource utilization of FPGAs. The accuracy and efficiency of parallel computing performance models often depend on mean maximum computations. Despite significant prior work, there have been no sufficient mathematical tools for this important calculation. This work presents an Effective Mean Maximum Approximation method, which is more general, accurate, and efficient than previous methods. Together, these research results help address how to make linear algebra applications perform better on high performance reconfigurable computing architectures

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor
    corecore