1,878 research outputs found

    Finding Frequent Subsequences in a Set of Texts

    Get PDF
    Given a set of strings, the Common Subsequence Automaton accepts all common subsequences of these strings. Such an automaton can be deduced from other automata like the Directed Acyclic Subsequence Graph or the Subsequence Automaton. In this paper, we introduce some new issues in text algorithm on the basis of Common Subsequences related problems. Firstly, we make an overview of different existing automata, focusing on their similarities and differences. Secondly, we present a new automaton, the Constrained Subsequence Automaton, which extends the Common Subsequence Automaton, by adding an integer qq denoted quorum

    Subsequence Automata with Default Transitions

    Get PDF
    Let SS be a string of length nn with characters from an alphabet of size σ\sigma. The \emph{subsequence automaton} of SS (often called the \emph{directed acyclic subsequence graph}) is the minimal deterministic finite automaton accepting all subsequences of SS. A straightforward construction shows that the size (number of states and transitions) of the subsequence automaton is O(nσ)O(n\sigma) and that this bound is asymptotically optimal. In this paper, we consider subsequence automata with \emph{default transitions}, that is, special transitions to be taken only if none of the regular transitions match the current character, and which do not consume the current character. We show that with default transitions, much smaller subsequence automata are possible, and provide a full trade-off between the size of the automaton and the \emph{delay}, i.e., the maximum number of consecutive default transitions followed before consuming a character. Specifically, given any integer parameter kk, 1<kσ1 < k \leq \sigma, we present a subsequence automaton with default transitions of size O(nklogkσ)O(nk\log_{k}\sigma) and delay O(logkσ)O(\log_k \sigma). Hence, with k=2k = 2 we obtain an automaton of size O(nlogσ)O(n \log \sigma) and delay O(logσ)O(\log \sigma). On the other extreme, with k=σk = \sigma, we obtain an automaton of size O(nσ)O(n \sigma) and delay O(1)O(1), thus matching the bound for the standard subsequence automaton construction. Finally, we generalize the result to multiple strings. The key component of our result is a novel hierarchical automata construction of independent interest.Comment: Corrected typo

    Completeness Results for Parameterized Space Classes

    Full text link
    The parameterized complexity of a problem is considered "settled" once it has been shown to lie in FPT or to be complete for a class in the W-hierarchy or a similar parameterized hierarchy. Several natural parameterized problems have, however, resisted such a classification. At least in some cases, the reason is that upper and lower bounds for their parameterized space complexity have recently been obtained that rule out completeness results for parameterized time classes. In this paper, we make progress in this direction by proving that the associative generability problem and the longest common subsequence problem are complete for parameterized space classes. These classes are defined in terms of different forms of bounded nondeterminism and in terms of simultaneous time--space bounds. As a technical tool we introduce a "union operation" that translates between problems complete for classical complexity classes and for W-classes.Comment: IPEC 201

    The separation problem for regular languages by piecewise testable languages

    Full text link
    Separation is a classical problem in mathematics and computer science. It asks whether, given two sets belonging to some class, it is possible to separate them by another set of a smaller class. We present and discuss the separation problem for regular languages. We then give a direct polynomial time algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a BΣ1(<)B{\Sigma}1(<) sentence can witness that the languages are indeed disjoint. The proof is a reformulation and a refinement of an algebraic argument already given by Almeida and the second author
    corecore