55 research outputs found

    Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques

    Get PDF
    Producción CientíficaPotatoes are one of the most demanded products due to their richness in nutrients. However, the lack of attention to external and, especially, internal defects greatly reduces its marketability and makes it prone to a variety of diseases. The present study aims to identify healthy-looking potatoes but with internal defects. A visible (Vis), near-infrared (NIR), and short-wavelength infrared (SWIR) spectrometer was used to capture spectral data from the samples. Using a hybrid of artificial neural networks (ANN) and the cultural algorithm (CA), the wavelengths of 861, 883, and 998 nm in Vis/NIR region, and 1539, 1858, and 1896 nm in the SWIR region were selected as optimal. Then, the samples were classified into either healthy or defective class using an ensemble method consisting of four classifiers, namely hybrid ANN and imperialist competitive algorithm (ANN-ICA), hybrid ANN and harmony search algorithm (ANN-HS), linear discriminant analysis (LDA), and k-nearest neighbors (KNN), combined with the majority voting (MV) rule. The performance of the classifier was assessed using only the selected wavelengths and using all the spectral data. The total correct classification rates using all the spectral data were 96.3% and 86.1% in SWIR and Vis/NIR ranges, respectively, and using the optimal wavelengths 94.1% and 83.4% in SWIR and Vis/NIR, respectively. The statistical tests revealed that there are no significant differences between these datasets. Interestingly, the best results were obtained using only LDA, achieving 97.7% accuracy for the selected wavelengths in the SWIR spectral range.Ministerio de Ciencia, Innovación y Universidades; Ministerio de Ciencia e Innovación; Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (FEDER) - (grant RTI2018-098156-B-C53

    Application of Spectroscopic Techniques in Early Detection of Fungal Plant Pathogens

    Get PDF
    Among the plant pathogens, around 85% of diseases in plants are caused by fungi. Rapid and accurate detection of fungal phytopathogens up to the species level is crucial for the implementation of proper disease control strategies, which were previously relied on conventional approaches. The conventional identification methods have been replaced by many rapid and accurate methods like high throughput sequencing, real-time polymerase chain reaction (PCR), serological and spectroscopic technique. Among these rapid pathogen detection techniques, spectroscopy is a rapid, cost-effective, non-destructive method and does not require sample preparation. Nowadays, visible, infrared and near-infrared rays are commonly employed for pathogen detection. Fluorescence Spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Attenuated Total Reflection (ATR)-FTIR spectroscopy, Raman Spectroscopy, Matrix-assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). Biocontrol fungus-like Trichoderma spp. can be detected with the help of MALDI-TOF MS. Fluorescence spectroscopy used fluorescence emanating from the sample and successfully used in the detection of powdery mildew (Blumeria graminis). Hyperspectral imaging is an advanced approach which uses artificial intelligence in plant disease detection. This literature discusses briefly about the features of above-mentioned spectroscopy techniques which may impel the general understanding and propel the research activities

    A survey of image processing techniques for agriculture

    Get PDF
    Computer technologies have been shown to improve agricultural productivity in a number of ways. One technique which is emerging as a useful tool is image processing. This paper presents a short survey on using image processing techniques to assist researchers and farmers to improve agricultural practices. Image processing has been used to assist with precision agriculture practices, weed and herbicide technologies, monitoring plant growth and plant nutrition management. This paper highlights the future potential for image processing for different agricultural industry contexts

    Developing affordable high-throughput plant phenotyping methods for breeding of cereals and tuber crops

    Get PDF
    High-throughput plant phenotyping (HTPP) is a fast, accurate, and non-destructive process for evaluating plants' health and environmental adaptability. HTPP accelerates the identification of agronomic traits of interest, eliminates subjectivism (which is innate to humans), and facilitates the development of adapted genotypes. Current HTPP methods often rely on imaging sensors and computer vision both in the field and under controlled (indoor) conditions. However, their use is limited by the costs and complexity of the necessary instrumentation, data analysis tools, and software. This issue could be overcome by developing more cost-efficient and user-friendly methods that let breeders, farmers, and stakeholders access the benefits of HTPP. To assist such efforts, this thesis presents an ensemble of dedicated affordable phenotyping methods using RGB imaging for a range of key applications under controlled conditions.  The affordable Phenocave imaging system for use in controlled conditions was developed to facilitate studies on the effects of abiotic stresses by gathering data on important plant characteristics related to growth, yield, and adaptation to growing conditions and cultivation systems. Phenocave supports imaging sensors including visible (RGB), spectroscopic (multispectral and hyperspectral), and thermal imaging. Additionally, a pipeline for RGB image analysis was implemented as a plugin for the free and easy-to-use software ImageJ. This plugin has since proven to be an accurate alternative to conventional measurements that produces highly reproducible results. A subsequent study was conducted to evaluate the effects of heat and drought stress on plant growth and grain nutrient composition in wheat, an important staple cereal in Sweden. The effects of stress on plant growth were evaluated using image analysis, while stress-induced changes in the abundance of key plant compounds were evaluated by analyzing the nutrient composition of grains via chromatography. This led to the discovery of genotypes whose harvest quality remains stable under heat and drought stress. The next objective was to evaluate biotic stress; for this case, the effect of the fungal disease Fusarium head blight (FHB) that affects grain development in wheat was investigated. For this purpose, seed phenotyping parameters were used to determine the components and settings of a statistical model, which predicts the occurrence of FHB. The results reveal that grain morphology evaluations, such as length and width, were found to be significantly affected by the disease. Another study was carried out to estimate the disease severity of the common scab (CS) in potatoes, a widely popular food source. CS occurs on the tubers and reduces their visual appeal, significantly affecting their market value. Tubers were analyzed by a deep learning-based method to estimate disease lesion areas caused by CS. Results showed a high correlation between the predictions and expert visual scorings of the disease and proved to be a potential tool for the selection of genotypes that fulfill the market standards and resistance to CS. Both case studies highlight the role of imaging in plant health monitoring and its integration into the larger picture of plant health management.  The methods presented in this work are a starting point for bridging the gap between costs and accessibility to imaging technology. These are affordable and user-friendly resources for generating pivotal knowledge on plant development and genotype selection. In the future, image acquisition of all the methods can be integrated into the Phenocave system, potentially allowing for a more automated and efficient plant health monitoring process, leading to the identification of tolerant genotypes to biotic and abiotic stresses

    A review of optical nondestructive visual and near-infrared methods for food quality and safety

    Get PDF
    This paper is a review of optical methods for online nondestructive food quality monitoring. The key spectral areas are the visual and near-infrared wavelengths. We have collected the information of over 260 papers published mainly during the last 20 years. Many of them use an analysis method called chemometrics which is shortly described in the paper. The main goal of this paper is to provide a general view of work done according to different FAO food classes. Hopefully using optical VIS/NIR spectroscopy gives an idea of how to better meet market and consumer needs for high-quality food stuff.©2013 the Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed

    Automated early plant disease detection and grading system: Development and implementation

    Get PDF
    As the agriculture industry grows, many attempts have been made to ensure high quality of produce. Diseases and defects found in plants and crops, affect the agriculture industry greatly. Hence, many techniques and technologies have been developed to help solving or reducing the impact of plant diseases. Imagining analysis tools, and gas sensors are becoming more frequently integrated into smart systems for plant disease detection. Many disease detection systems incorporate imaging analysis tools and Volatile Organic Compound (VOC) profiling techniques to detect early symptoms of diseases and defects of plants, fruits and vegetative produce. These disease detection techniques can be further categorized into two main groups; preharvest disease detection and postharvest disease detection techniques. This thesis aims to introduce the available disease detection techniques and to compare it with the latest innovative smart systems that feature visible imaging, hyperspectral imaging, and VOC profiling. In addition, this thesis incorporates the use of image analysis tools and k-means segmentation to implement a preharvest Offline and Online disease detection system. The Offline system to be used by pathologists and agriculturists to measure plant leaf disease severity levels. K-means segmentation and triangle thresholding techniques are used together to achieve good background segmentation of leaf images. Moreover, a Mamdani-Type Fuzzy Logic classification technique is used to accurately categorize leaf disease severity level. Leaf images taken from a real field with varying resolutions were tested using the implemented system to observe its effect on disease grade classification. Background segmentation using k-means clustering and triangle thresholding proved to be effective, even in non-uniform lighting conditions. Integration of a Fuzzy Logic system for leaf disease severity level classification yielded in classification accuracies of 98%. Furthermore, a robot is designed and implemented as a robotized Online system to provide field based analysis of plant health using visible and near infrared spectroscopy. Fusion of visible and near infrared images are used to calculate the Normalized Deference Vegetative Index (NDVI) to measure and monitor plant health. The robot is designed to have the functionality of moving across a specified path within an agriculture field and provide health information of leaves as well as position data. The system was tested in a tomato greenhouse under real field conditions. The developed system proved effective in accurately classifying plant health into one of 3 classes; underdeveloped, unhealthy, and healthy with an accuracy of 83%. A map with plant health and locations is produced for farmers and agriculturists to monitor the plant health across different areas. This system has the capability of providing early vital health analysis of plants for immediate action and possible selective pesticide spraying

    Pre-Harvest and Post-Harvest Techniques for Plant Disease Detections

    Get PDF
    As the agriculture industry is growing fast, many efforts are introduced to ensure a high quality of produce. Diseases and defects found in plants and crops affect greatly the agriculture industry. Hence, many techniques and technologies have been developed to help solve or reduce the impact of plant diseases. Imagining analysis tools and gas sensors are becoming more frequently integrated into smart systems for plant disease detection. Many disease detection systems incorporate imaging analysis tools and VOC (Volatile Organic Compound) profiling techniques to detect early symptoms of diseases and defects of plants, fruits, and vegetative produce. These disease detection techniques can be further categorized into two main groups: preharvest disease detection and postharvest disease detection techniques. This paper aims to introduce the available disease detection techniques and to compare them with the latest innovative smart systems that feature visible imaging, hyperspectral imaging, and VOC profiling. In addition, this paper considers the efforts to automate imaging techniques to help accelerate the disease detection process. Different approaches are analyzed and compared in terms of work environment, automation, implementation, and accuracy of disease identification along with the future evolution perspective in this field
    corecore