134,347 research outputs found

    Bilingual language processing

    Get PDF

    THE CHILD AND THE WORLD: How Children acquire Language

    Get PDF
    HOW CHILDREN ACQUIRE LANGUAGE Over the last few decades research into child language acquisition has been revolutionized by the use of ingenious new techniques which allow one to investigate what in fact infants (that is children not yet able to speak) can perceive when exposed to a stream of speech sound, the discriminations they can make between different speech sounds, differentspeech sound sequences and different words. However on the central features of the mystery, the extraordinarily rapid acquisition of lexicon and complex syntactic structures, little solid progress has been made. The questions being researched are how infants acquire and produce the speech sounds (phonemes) of the community language; how infants find words in the stream of speech; and how they link words to perceived objects or action, that is, discover meanings. In a recent general review in Nature of children's language acquisition, Patricia Kuhl also asked why we do not learn new languages as easily at 50 as at 5 and why computers have not cracked the human linguistic code. The motor theory of language function and origin makes possible a plausible account of child language acquisition generally from which answers can be derived also to these further questions. Why computers so far have been unable to 'crack' the language problem becomes apparent in the light of the motor theory account: computers can have no natural relation between words and their meanings; they have no conceptual store to which the network of words is linked nor do they have the innate aspects of language functioning - represented by function words; computers have no direct links between speech sounds and movement patterns and they do not have the instantly integrated neural patterning underlying thought - they necessarily operate serially and hierarchically. Adults find the acquisition of a new language much more difficult than children do because they are already neurally committed to the link between the words of their first language and the elements in their conceptual store. A second language being acquired by an adult is in direct competition for neural space with the network structures established for the first language

    Pointing as an Instrumental Gesture : Gaze Representation Through Indication

    Get PDF
    The research of the first author was supported by a Fulbright Visiting Scholar Fellowship and developed in 2012 during a period of research visit at the University of Memphis.Peer reviewedPublisher PD

    Solving Bongard Problems with a Visual Language and Pragmatic Reasoning

    Full text link
    More than 50 years ago Bongard introduced 100 visual concept learning problems as a testbed for intelligent vision systems. These problems are now known as Bongard problems. Although they are well known in the cognitive science and AI communities only moderate progress has been made towards building systems that can solve a substantial subset of them. In the system presented here, visual features are extracted through image processing and then translated into a symbolic visual vocabulary. We introduce a formal language that allows representing complex visual concepts based on this vocabulary. Using this language and Bayesian inference, complex visual concepts can be induced from the examples that are provided in each Bongard problem. Contrary to other concept learning problems the examples from which concepts are induced are not random in Bongard problems, instead they are carefully chosen to communicate the concept, hence requiring pragmatic reasoning. Taking pragmatic reasoning into account we find good agreement between the concepts with high posterior probability and the solutions formulated by Bongard himself. While this approach is far from solving all Bongard problems, it solves the biggest fraction yet

    Neural overlap of L1 and L2 semantic representations across visual and auditory modalities : a decoding approach/

    Get PDF
    This study investigated whether brain activity in Dutch-French bilinguals during semantic access to concepts from one language could be used to predict neural activation during access to the same concepts from another language, in different language modalities/tasks. This was tested using multi-voxel pattern analysis (MVPA), within and across language comprehension (word listening and word reading) and production (picture naming). It was possible to identify the picture or word named, read or heard in one language (e.g. maan, meaning moon) based on the brain activity in a distributed bilateral brain network while, respectively, naming, reading or listening to the picture or word in the other language (e.g. lune). The brain regions identified differed across tasks. During picture naming, brain activation in the occipital and temporal regions allowed concepts to be predicted across languages. During word listening and word reading, across-language predictions were observed in the rolandic operculum and several motor-related areas (pre- and postcentral, the cerebellum). In addition, across-language predictions during reading were identified in regions typically associated with semantic processing (left inferior frontal, middle temporal cortex, right cerebellum and precuneus) and visual processing (inferior and middle occipital regions and calcarine sulcus). Furthermore, across modalities and languages, the left lingual gyrus showed semantic overlap across production and word reading. These findings support the idea of at least partially language- and modality-independent semantic neural representations

    The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism

    Full text link
    Computer vision and other biometrics data science applications have commenced a new project of profiling people. Rather than using 'transaction generated information', these systems measure the 'real world' and produce an assessment of the 'world state' - in this case an assessment of some individual trait. Instead of using proxies or scores to evaluate people, they increasingly deploy a logic of revealing the truth about reality and the people within it. While these profiling knowledge claims are sometimes tentative, they increasingly suggest that only through computation can these excesses of reality be captured and understood. This article explores the bases of those claims in the systems of measurement, representation, and classification deployed in computer vision. It asks if there is something new in this type of knowledge claim, sketches an account of a new form of computational empiricism being operationalised, and questions what kind of human subject is being constructed by these technological systems and practices. Finally, the article explores legal mechanisms for contesting the emergence of computational empiricism as the dominant knowledge platform for understanding the world and the people within it

    Interactions between visual and semantic processing during object recognition revealed by modulatory effects of age of acquisition

    Get PDF
    The age of acquisition (AoA) of objects and their names is a powerful determinant of processing speed in adulthood, with early-acquired objects being recognized and named faster than late-acquired objects. Previous research using fMRI (Ellis et al., 2006. Traces of vocabulary acquisition in the brain: evidence from covert object naming. NeuroImage 33, 958–968) found that AoA modulated the strength of BOLD responses in both occipital and left anterior temporal cortex during object naming. We used magnetoencephalography (MEG) to explore in more detail the nature of the influence of AoA on activity in those two regions. Covert object naming recruited a network within the left hemisphere that is familiar from previous research, including visual, left occipito-temporal, anterior temporal and inferior frontal regions. Region of interest (ROI) analyses found that occipital cortex generated a rapid evoked response (~ 75–200 ms at 0–40 Hz) that peaked at 95 ms but was not modulated by AoA. That response was followed by a complex of later occipital responses that extended from ~ 300 to 850 ms and were stronger to early- than late-acquired items from ~ 325 to 675 ms at 10–20 Hz in the induced rather than the evoked component. Left anterior temporal cortex showed an evoked response that occurred significantly later than the first occipital response (~ 100–400 ms at 0–10 Hz with a peak at 191 ms) and was stronger to early- than late-acquired items from ~ 100 to 300 ms at 2–12 Hz. A later anterior temporal response from ~ 550 to 1050 ms at 5–20 Hz was not modulated by AoA. The results indicate that the initial analysis of object forms in visual cortex is not influenced by AoA. A fastforward sweep of activation from occipital and left anterior temporal cortex then results in stronger activation of semantic representations for early- than late-acquired objects. Top-down re-activation of occipital cortex by semantic representations is then greater for early than late acquired objects resulting in delayed modulation of the visual response

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    • …
    corecore