65 research outputs found

    Justified Representation in Multiwinner Voting: Axioms and Algorithms

    Get PDF
    Suppose that a group of voters wants to select k 1 alternatives from a given set, and each voter indicates which of the alternatives are acceptable to her: the alternatives could be conference submissions, applicants for a scholarship or locations for a fast food chain. In this setting it is natural to require that the winning set represents the voters fairly, in the sense that large groups of voters with similar preferences have at least some of their approved alternatives in the winning set. We describe several ways to formalize this idea, and show how to use it to classify voting rules; surprisingly, two voting rules proposed in the XIXth century turn out to play an important role in our analysis

    Approval-Based Apportionment

    Get PDF
    In the apportionment problem, a fixed number of seats must be distributed among parties in proportion to the number of voters supporting each party. We study a generalization of this setting, in which voters cast approval ballots over parties, such that each voter can support multiple parties. This approval-based apportionment setting generalizes traditional apportionment and is a natural restriction of approval-based multiwinner elections, where approval ballots range over individual candidates. Using techniques from both apportionment and multiwinner elections, we are able to provide representation guarantees that are currently out of reach in the general setting of multiwinner elections: First, we show that core-stable committees are guaranteed to exist and can be found in polynomial time. Second, we demonstrate that extended justified representation is compatible with committee monotonicity

    Approval-based apportionment

    Get PDF
    In the apportionment problem, a fixed number of seats must be distributed among parties in proportion to the number of voters supporting each party. We study a generalization of this setting, in which voters can support multiple parties by casting approval ballots. This approval-based apportionment setting generalizes traditional apportionment and is a natural restriction of approval-based multiwinner elections, where approval ballots range over individual candidates instead of parties. Using techniques from both apportionment and multiwinner elections, we identify rules that generalize the D’Hondt apportionment method and that satisfy strong axioms which are generalizations of properties commonly studied in the apportionment literature. In fact, the rules we discuss provide representation guarantees that are currently out of reach in the general setting of multiwinner elections: First, we show that core-stable committees are guaranteed to exist and can be found in polynomial time. Second, we demonstrate that extended justified representation is compatible with committee monotonicity (also known as house monotonicity)

    Multi-Winner Voting with Approval Preferences

    Get PDF
    From fundamental concepts and results to recent advances in computational social choice, this open access book provides a thorough and in-depth look at multi-winner voting based on approval preferences. The main focus is on axiomatic analysis, algorithmic results and several applications that are relevant in artificial intelligence, computer science and elections of any kind. What is the best way to select a set of candidates for a shortlist, for an executive committee, or for product recommendations? Multi-winner voting is the process of selecting a fixed-size set of candidates based on the preferences expressed by the voters. A wide variety of decision processes in settings ranging from politics (parliamentary elections) to the design of modern computer applications (collaborative filtering, dynamic Q&A platforms, diversity in search results, etc.) share the problem of identifying a representative subset of alternatives. The study of multi-winner voting provides the principled analysis of this task. Approval-based committee voting rules (in short: ABC rules) are multi-winner voting rules particularly suitable for practical use. Their usability is founded on the straightforward form in which the voters can express preferences: voters simply have to differentiate between approved and disapproved candidates. Proposals for ABC rules are numerous, some dating back to the late 19th century while others have been introduced only very recently. This book explains and discusses these rules, highlighting their individual strengths and weaknesses. With the help of this book, the reader will be able to choose a suitable ABC voting rule in a principled fashion, participate in, and be up to date with the ongoing research on this topic

    The maximin support method : an extension of the D’Hondt method to approval-based multiwinner elections

    Get PDF
    We propose the maximin support method, a novel extension of the D’Hondt apportionment method to approval-based multiwinner elections. The maximin support method is a sequential procedure that aims to maximize the voter support of the least supported elected candidate. It can be computed efficiently and satisfies (adjusted versions of) the main properties of the original D’Hondt method: house monotonicity, population monotonicity, and proportional representation. We also establish a close relationship between the maximin support method and alternative D’Hondt extensions due to Phragmén

    Justifying Groups in Multiwinner Approval Voting

    Full text link
    Justified representation (JR) is a standard notion of representation in multiwinner approval voting. Not only does a JR committee always exist, but previous work has also shown through experiments that the JR condition can typically be fulfilled by groups of fewer than kk candidates. In this paper, we study such groups -- known as n/kn/k-justifying groups -- both theoretically and empirically. First, we show that under the impartial culture model, n/kn/k-justifying groups of size less than k/2k/2 are likely to exist, which implies that the number of JR committees is usually large. We then present efficient approximation algorithms that compute a small n/kn/k-justifying group for any given instance, and a polynomial-time exact algorithm when the instance admits a tree representation. In addition, we demonstrate that small n/kn/k-justifying groups can often be useful for obtaining a gender-balanced JR committee even though the problem is NP-hard.Comment: Appears in the 15th International Symposium on Algorithmic Game Theory (SAGT), 202
    • …
    corecore