55,863 research outputs found

    A Unified Multilingual Handwriting Recognition System using multigrams sub-lexical units

    Full text link
    We address the design of a unified multilingual system for handwriting recognition. Most of multi- lingual systems rests on specialized models that are trained on a single language and one of them is selected at test time. While some recognition systems are based on a unified optical model, dealing with a unified language model remains a major issue, as traditional language models are generally trained on corpora composed of large word lexicons per language. Here, we bring a solution by con- sidering language models based on sub-lexical units, called multigrams. Dealing with multigrams strongly reduces the lexicon size and thus decreases the language model complexity. This makes pos- sible the design of an end-to-end unified multilingual recognition system where both a single optical model and a single language model are trained on all the languages. We discuss the impact of the language unification on each model and show that our system reaches state-of-the-art methods perfor- mance with a strong reduction of the complexity.Comment: preprin

    Optimum non linear binary image restoration through linear grey-scale operations

    Get PDF
    Non-linear image processing operators give excellent results in a number of image processing tasks such as restoration and object recognition. However they are frequently excluded from use in solutions because the system designer does not wish to introduce additional hardware or algorithms and because their design can appear to be ad hoc. In practice the median filter is often used though it is rarely optimal. This paper explains how various non-linear image processing operators may be implemented on a basic linear image processing system using only convolution and thresholding operations. The paper is aimed at image processing system developers wishing to include some non-linear processing operators without introducing additional system capabilities such as extra hardware components or software toolboxes. It may also be of benefit to the interested reader wishing to learn more about non-linear operators and alternative methods of design and implementation. The non-linear tools include various components of mathematical morphology, median and weighted median operators and various order statistic filters. As well as describing novel algorithms for implementation within a linear system the paper also explains how the optimum filter parameters may be estimated for a given image processing task. This novel approach is based on the weight monotonic property and is a direct rather than iterated method

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    How much control is enough? Optimizing fun with unreliable input

    Get PDF
    Brain-computer interfaces (BCI) provide a valuable new input modality within human- computer interaction systems, but like other body-based inputs, the system recognition of input commands is far from perfect. This raises important questions, such as: What level of control should such an interface be able to provide? What is the relationship between actual and perceived control? And in the case of applications for entertainment in which fun is an important part of user experience, should we even aim for perfect control, or is the optimum elsewhere? In this experiment the user plays a simple game in which a hamster has to be guided to the exit of a maze, in which the amount of control the user has over the hamster is varied. The variation of control through confusion matrices makes it possible to simulate the experience of using a BCI, while using the traditional keyboard for input. After each session the user �lled out a short questionnaire on fun and perceived control. Analysis of the data showed that the perceived control of the user could largely be explained by the amount of control in the respective session. As expected, user frustration decreases with increasing control. Moreover, the results indicate that the relation between fun and control is not linear. Although in the beginning fun does increase with improved control, the level of fun drops again just before perfect control is reached. This poses new insights for developers of games wanting to incorporate some form of BCI in their game: for creating a fun game, unreliable input can be used to create a challenge for the user

    The Search for Extraterrestrial Intelligence (SETI)

    Get PDF
    A bibliography of reports concerning the Search for Extraterrestrial Intelligence is presented. Cosmic evolution, space communication, and technological advances are discussed along with search strategies and search systems

    Analysis and Selection of a Remote Docking Simulation Visual Display System

    Get PDF
    The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station
    corecore