4,678 research outputs found

    Optimal Bounds on Approximation of Submodular and XOS Functions by Juntas

    Full text link
    We investigate the approximability of several classes of real-valued functions by functions of a small number of variables ({\em juntas}). Our main results are tight bounds on the number of variables required to approximate a function f:{0,1}n[0,1]f:\{0,1\}^n \rightarrow [0,1] within 2\ell_2-error ϵ\epsilon over the uniform distribution: 1. If ff is submodular, then it is ϵ\epsilon-close to a function of O(1ϵ2log1ϵ)O(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}) variables. This is an exponential improvement over previously known results. We note that Ω(1ϵ2)\Omega(\frac{1}{\epsilon^2}) variables are necessary even for linear functions. 2. If ff is fractionally subadditive (XOS) it is ϵ\epsilon-close to a function of 2O(1/ϵ2)2^{O(1/\epsilon^2)} variables. This result holds for all functions with low total 1\ell_1-influence and is a real-valued analogue of Friedgut's theorem for boolean functions. We show that 2Ω(1/ϵ)2^{\Omega(1/\epsilon)} variables are necessary even for XOS functions. As applications of these results, we provide learning algorithms over the uniform distribution. For XOS functions, we give a PAC learning algorithm that runs in time 2poly(1/ϵ)poly(n)2^{poly(1/\epsilon)} poly(n). For submodular functions we give an algorithm in the more demanding PMAC learning model (Balcan and Harvey, 2011) which requires a multiplicative 1+γ1+\gamma factor approximation with probability at least 1ϵ1-\epsilon over the target distribution. Our uniform distribution algorithm runs in time 2poly(1/(γϵ))poly(n)2^{poly(1/(\gamma\epsilon))} poly(n). This is the first algorithm in the PMAC model that over the uniform distribution can achieve a constant approximation factor arbitrarily close to 1 for all submodular functions. As follows from the lower bounds in (Feldman et al., 2013) both of these algorithms are close to optimal. We also give applications for proper learning, testing and agnostic learning with value queries of these classes.Comment: Extended abstract appears in proceedings of FOCS 201

    Latent tree models

    Full text link
    Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent class model. Latent tree models, or their submodels, are widely used in: phylogenetic analysis, network tomography, computer vision, causal modeling, and data clustering. They also contain other well-known classes of models like hidden Markov models, Brownian motion tree model, the Ising model on a tree, and many popular models used in phylogenetics. This article offers a concise introduction to the theory of latent tree models. We emphasise the role of tree metrics in the structural description of this model class, in designing learning algorithms, and in understanding fundamental limits of what and when can be learned

    Confronting classical and Bayesian confidence limits to examples

    Get PDF
    Classical confidence limits are compared to Bayesian error bounds by studying relevant examples. The performance of the two methods is investigated relative to the properties coherence, precision, bias, universality, simplicity. A proposal to define error limits in various cases is derived from the comparison. It is based on the likelihood function only and follows in most cases the general practice in high energy physics. Classical methods are discarded because they violate the likelihood principle, they can produce physically inconsistent results, suffer from a lack of precision and generality. Also the extreme Bayesian approach with arbitrary choice of the prior probability density or priors deduced from scaling laws is rejected.Comment: 16 pages, 12 figure

    Efficient Circuits for Quantum Walks

    Full text link
    We present an efficient general method for realizing a quantum walk operator corresponding to an arbitrary sparse classical random walk. Our approach is based on Grover and Rudolph's method for preparing coherent versions of efficiently integrable probability distributions. This method is intended for use in quantum walk algorithms with polynomial speedups, whose complexity is usually measured in terms of how many times we have to apply a step of a quantum walk, compared to the number of necessary classical Markov chain steps. We consider a finer notion of complexity including the number of elementary gates it takes to implement each step of the quantum walk with some desired accuracy. The difference in complexity for various implementation approaches is that our method scales linearly in the sparsity parameter and poly-logarithmically with the inverse of the desired precision. The best previously known general methods either scale quadratically in the sparsity parameter, or polynomially in the inverse precision. Our approach is especially relevant for implementing quantum walks corresponding to classical random walks like those used in the classical algorithms for approximating permanents and sampling from binary contingency tables. In those algorithms, the sparsity parameter grows with the problem size, while maintaining high precision is required.Comment: Modified abstract, clarified conclusion, added application section in appendix and updated reference

    A closed-form approach to Bayesian inference in tree-structured graphical models

    Full text link
    We consider the inference of the structure of an undirected graphical model in an exact Bayesian framework. More specifically we aim at achieving the inference with close-form posteriors, avoiding any sampling step. This task would be intractable without any restriction on the considered graphs, so we limit our exploration to mixtures of spanning trees. We consider the inference of the structure of an undirected graphical model in a Bayesian framework. To avoid convergence issues and highly demanding Monte Carlo sampling, we focus on exact inference. More specifically we aim at achieving the inference with close-form posteriors, avoiding any sampling step. To this aim, we restrict the set of considered graphs to mixtures of spanning trees. We investigate under which conditions on the priors - on both tree structures and parameters - exact Bayesian inference can be achieved. Under these conditions, we derive a fast an exact algorithm to compute the posterior probability for an edge to belong to {the tree model} using an algebraic result called the Matrix-Tree theorem. We show that the assumption we have made does not prevent our approach to perform well on synthetic and flow cytometry data
    corecore