834 research outputs found

    Coding gain in paraunitary analysis/synthesis systems

    Get PDF
    A formal proof that bit allocation results hold for the entire class of paraunitary subband coders is presented. The problem of finding an optimal paraunitary subband coder, so as to maximize the coding gain of the system, is discussed. The bit allocation problem is analyzed for the case of the paraunitary tree-structured filter banks, such as those used for generating orthonormal wavelets. The even more general case of nonuniform filter banks is also considered. In all cases it is shown that under optimal bit allocation, the variances of the errors introduced by each of the quantizers have to be equal. Expressions for coding gains for these systems are derived

    Orthonormal and biorthonormal filter banks as convolvers, and convolutional coding gain

    Get PDF
    Convolution theorems for filter bank transformers are introduced. Both uniform and nonuniform decimation ratios are considered, and orthonormal as well as biorthonormal cases are addressed. All the theorems are such that the original convolution reduces to a sum of shorter, decoupled convolutions in the subbands. That is, there is no need to have cross convolution between subbands. For the orthonormal case, expressions for optimal bit allocation and the optimized coding gain are derived. The contribution to coding gain comes partly from the nonuniformity of the signal spectrum and partly from nonuniformity of the filter spectrum. With one of the convolved sequences taken to be the unit pulse function,,e coding gain expressions reduce to those for traditional subband and transform coding. The filter-bank convolver has about the same computational complexity as a traditional convolver, if the analysis bank has small complexity compared to the convolution itself

    Perfect reconstruction QMF banks for two-dimensional applications

    Get PDF
    A theory is outlined whereby it is possible to design a M x N channel two-dimensional quadrature mirror filter bank which has perfect reconstruction property. Such a property ensures freedom from aliasing, amplitude distortion, and phase distortion. The method is based on a simple property of certain transfer matrices, namely the losslessness property

    MDL Denoising Revisited

    Full text link
    We refine and extend an earlier MDL denoising criterion for wavelet-based denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and non-informative wavelet coefficients, respectively. This suggests two refinements, adding a code-length for the model index, and extending the model in order to account for subband-dependent coefficient distributions. A third refinement is derivation of soft thresholding inspired by predictive universal coding with weighted mixtures. We propose a practical method incorporating all three refinements, which is shown to achieve good performance and robustness in denoising both artificial and natural signals.Comment: Submitted to IEEE Transactions on Information Theory, June 200

    Results on principal component filter banks: colored noise suppression and existence issues

    Get PDF
    We have made explicit the precise connection between the optimization of orthonormal filter banks (FBs) and the principal component property: the principal component filter bank (PCFB) is optimal whenever the minimization objective is a concave function of the subband variances of the FB. This explains PCFB optimality for compression, progressive transmission, and various hitherto unnoticed white-noise, suppression applications such as subband Wiener filtering. The present work examines the nature of the FB optimization problems for such schemes when PCFBs do not exist. Using the geometry of the optimization search spaces, we explain exactly why these problems are usually analytically intractable. We show the relation between compaction filter design (i.e., variance maximization) and optimum FBs. A sequential maximization of subband variances produces a PCFB if one exists, but is otherwise suboptimal for several concave objectives. We then study PCFB optimality for colored noise suppression. Unlike the case when the noise is white, here the minimization objective is a function of both the signal and the noise subband variances. We show that for the transform coder class, if a common signal and noise PCFB (KLT) exists, it is, optimal for a large class of concave objectives. Common PCFBs for general FB classes have a considerably more restricted optimality, as we show using the class of unconstrained orthonormal FBs. For this class, we also show how to find an optimum FB when the signal and noise spectra are both piecewise constant with all discontinuities at rational multiples of π

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel
    corecore