4 research outputs found

    Power allocation and linear precoding for wireless communications with finite-alphabet inputs

    Get PDF
    This dissertation proposes a new approach to maximizing data rate/throughput of practical communication system/networks through linear precoding and power allocation. First, the mutual information or capacity region is derived for finite-alphabet inputs such as phase-shift keying (PSK), pulse-amplitude modulation (PAM), and quadrature amplitude modulation (QAM) signals. This approach, without the commonly used Gaussian input assumptions, complicates the mutual information analysis and precoder design but improves performance when the designed precoders are applied to practical systems and networks. Second, several numerical optimization methods are developed for multiple-input multiple-output (MIMO) multiple access channels, dual-hop relay networks, and point-to-point MIMO systems. In MIMO multiple access channels, an iterative weighted sum rate maximization algorithm is proposed which utilizes an alternating optimization strategy and gradient descent update. In dual-hop relay networks, the structure of the optimal precoder is exploited to develop a two-step iterative algorithm based on convex optimization and optimization on the Stiefel manifold. The proposed algorithm is insensitive to initial point selection and able to achieve a near global optimal precoder solution. The gradient descent method is also used to obtain the optimal power allocation scheme which maximizes the mutual information between the source node and destination node in dual-hop relay networks. For point-to-point MIMO systems, a low complexity precoding design method is proposed, which maximizes the lower bound of the mutual information with discretized power allocation vector in a non-iterative fashion, thus reducing complexity. Finally, performances of the proposed power allocation and linear precoding schemes are evaluated in terms of both mutual information and bit error rate (BER). Numerical results show that at the same target mutual information or sum rate, the proposed approaches achieve 3-10dB gains compared to the existing methods in the medium signal-to-noise ratio region. Such significant gains are also indicated in the coded BER systems --Abstract, page iv-v

    Analysis and Ad-hoc Networking Solutions for Cooperative Relaying Systems

    Get PDF
    Users of mobile networks are increasingly demanding higher data rates from their service providers. To cater to this demand, various signal processing and networking algorithms have been proposed. Amongst them the multiple input multiple output (MIMO) scheme of wireless communications is one of the most promising options. However, due to certain physical restrictions, e.g., size, it is not possible for many devices to have multiple antennas on them. Also, most of the devices currently in use are single-antenna devices. Such devices can make use of the MIMO scheme by employing cooperative MIMO methods. This involves nearby nodes utilizing the antennas of each other to form virtual antenna arrays (VAAs). Nodes with limited communication ranges can further employ multi-hopping to be able to communicate with far away nodes. However, an ad-hoc communications scheme with cooperative MIMO multi-hopping can be challenging to implement because of its de-centralized nature and lack of a centralized controling entity such as a base-station. This thesis looks at methods to alleviate the problems faced by such networks.In the first part of this thesis, we look, analytically, at the relaying scheme under consideration and derive closed form expressions for certain performance measures (signal to noise ratio (SNR), symbol error rate (SER), bit error rate (BER), and capacity) for the co-located and cooperative multiple antenna schemes in different relaying configurations (amplify-and-forward and decode-and-forward) and different antenna configurations (single input single output (SISO), single input multiple output (SIMO) and MIMO). These expressions show the importance of reducing the number of hops in multi-hop communications to achieve a better performance. We can also see the impact of different antenna configurations and different transmit powers on the number of hops through these simplified expressions.We also look at the impact of synchronization errors on the cooperative MIMO communications scheme and derive a lower bound of the SINR and an expression for the BER in the high SNR regime. These expressions can help the network designers to ensure that the quality of service (QoS) is satisfied even in the worst-case scenarios. In the second part of the thesis we present some algorithms developed by us to help the set-up and functioning of cluster-based ad-hoc networks that employ cooperative relaying. We present a clustering algorithm that takes into account the battery status of nodes in order to ensure a longer network life-time. We also present a routing mechanism that is tailored for use in cooperative MIMO multi-hop relaying. The benefits of both schemes are shown through simulations.A method to handle data in ad-hoc networks using distributed hash tables (DHTs) is also presented. Moreover, we also present a physical layer security mechanism for multi-hop relaying. We also analyze the physical layer security mechanism for the cooperative MIMO scheme. This analysis shows that the cooperative MIMO scheme is more beneficial than co-located MIMO in terms of the information theoretic limits of the physical layer security.Nutzer mobiler Netzwerke fordern zunehmend höhere Datenraten von ihren Dienstleistern. Um diesem Bedarf gerecht zu werden, wurden verschiedene Signalverarbeitungsalgorithmen entwickelt. Dabei ist das "Multiple input multiple output" (MIMO)-Verfahren für die drahtlose Kommunikation eine der vielversprechendsten Techniken. Jedoch ist aufgrund bestimmter physikalischer Beschränkungen, wie zum Beispiel die Baugröße, die Verwendung von mehreren Antennen für viele Endgeräte nicht möglich. Dennoch können solche Ein-Antennen-Geräte durch den Einsatz kooperativer MIMO-Verfahren von den Vorteilen des MIMO-Prinzips profitieren. Dabei schließen sich naheliegende Knoten zusammen um ein sogenanntes virtuelles Antennen-Array zu bilden. Weiterhin können Knoten mit beschränktem Kommunikationsbereich durch mehrere Hops mit weiter entfernten Knoten kommunizieren. Allerdings stellt der Aufbau eines solchen Ad-hoc-Netzwerks mit kooperativen MIMO-Fähigkeiten aufgrund der dezentralen Natur und das Fehlen einer zentral-steuernden Einheit, wie einer Basisstation, eine große Herausforderung dar. Diese Arbeit befasst sich mit den Problemstellungen dieser Netzwerke und bietet verschiedene Lösungsansätze.Im ersten Teil dieser Arbeit werden analytisch in sich geschlossene Ausdrücke für ein kooperatives Relaying-System bezüglicher verschiedener Metriken, wie das Signal-Rausch-Verhältnis, die Symbolfehlerrate, die Bitfehlerrate und die Kapazität, hergeleitet. Dabei werden die "Amplify-and forward" und "Decode-and-forward" Relaying-Protokolle, sowie unterschiedliche Mehrantennen-Konfigurationen, wie "Single input single output" (SISO), "Single input multiple output" (SIMO) und MIMO betrachtet. Diese Ausdrücke zeigen die Bedeutung der Reduzierung der Hop-Anzahl in Mehr-Hop-Systemen, um eine höhere Leistung zu erzielen. Zudem werden die Auswirkungen verschiedener Antennen-Konfigurationen und Sendeleistungen auf die Anzahl der Hops analysiert.  Weiterhin wird der Einfluss von Synchronisationsfehlern auf das kooperative MIMO-Verfahren herausgestellt und daraus eine untere Grenze für das Signal-zu-Interferenz-und-Rausch-Verhältnis, sowie ein Ausdruck für die Bitfehlerrate bei hohem Signal-Rausch-Verhältnis entwickelt. Diese Zusammenhänge sollen Netzwerk-Designern helfen die Qualität des Services auch in den Worst-Case-Szenarien sicherzustellen. Im zweiten Teil der Arbeit werden einige innovative Algorithmen vorgestellt, die die Einrichtung und die Funktionsweise von Cluster-basierten Ad-hoc-Netzwerken, die kooperative Relays verwenden, erleichtern und verbessern. Darunter befinden sich ein Clustering-Algorithmus, der den Batteriestatus der Knoten berücksichtigt, um eine längere Lebensdauer des Netzwerks zu gewährleisten und ein Routing-Mechanismus, der auf den Einsatz in kooperativen MIMO Mehr-Hop-Systemen zugeschnitten ist. Die Vorteile beider Algorithmen werden durch Simulationen veranschaulicht. Eine Methode, die Daten in Ad-hoc-Netzwerken mit verteilten Hash-Tabellen behandelt wird ebenfalls vorgestellt. Darüber hinaus wird auch ein Sicherheitsmechanismus für die physikalische Schicht in Multi-Hop-Systemen und kooperativen MIMO-Systemen präsentiert. Eine Analyse zeigt, dass das kooperative MIMO-Verfahren deutliche Vorteile gegenüber dem konventionellen MIMO-Verfahren hinsichtlich der informationstheoretischen Grenzen der Sicherheit auf der physikalischen Schicht aufweist

    Collaborative Estimation in Distributed Sensor Networks

    Get PDF
    Networks of smart ultra-portable devices are already indispensable in our lives, augmenting our senses and connecting our lives through real time processing and communication of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user\u27s sight, the engineering of these devices involves fierce tradeoffs between energy availability (battery sizes impact portability) and signal processing / communication capability (which impacts the smartness of the devices). The goal of this dissertation is to provide a fundamental understanding and characterization of these tradeoffs in the context of a sensor network, where the goal is to estimate a common signal by coordinating a multitude of battery-powered sensor nodes. Most of the research so far has been based on two key assumptions -- distributed processing and temporal independence -- that lend analytical tractability to the problem but otherwise are often found lacking in practice. This dissertation introduces novel techniques to relax these assumptions -- leading to vastly efficient energy usage in typical networks (up to 20% savings) and new insights on the quality of inference. For example, the phenomenon of sensor drift is ubiquitous in applications such as air-quality monitoring, oceanography and bridge monitoring, where calibration is often difficult and costly. This dissertation provides an analytical framework linking the state of calibration to the overall uncertainty of the inferred parameters. In distributed estimation, sensor nodes locally process their observed data and send the resulting messages to a sink, which combines the received messages to produce a final estimate of the unknown parameter. In this dissertation, this problem is generalized and called collaborative estimation , where some sensors can potentially have access to the observations from neighboring sensors and use that information to enhance the quality of their messages sent to the sink, while using the same (or lower) energy resources. This is motivated by the fact that inter-sensor communication may be possible if sensors are geographically close. As demonstrated in this dissertation, collaborative estimation is particularly effective in energy-skewed and information-skewed networks, where some nodes may have larger batteries than others and similarly some nodes may be more informative (less noisy) compared to others. Since the node with the largest battery is not necessarily also the most informative, the proposed inter-sensor collaboration provides a natural framework to route the relevant information from low-energy-high-quality nodes to high-energy-low-quality nodes in a manner that enhances the overall power-distortion tradeoff. This dissertation also analyzes how time-correlated measurement noise affects the uncertainties of inferred parameters. Imperfections such as baseline drift in sensors result in a time-correlated additive component in the measurement noise. Though some models of drift have been reported in the literature earlier, none of the studies have considered the effect of drifting sensors on an estimation application. In this dissertation, approximate measures of estimation accuracy (Cramer-Rao bounds) are derived as a function of physical properties of sensors -- namely the drift strength, correlation (Markov) factor and the time-elapsed since last calibration. For stationary drift (Markov factor less than one), it is demonstrated that the first order effect of drift is asymptotically equivalent to scaling the measurement noise by an appropriate factor. When the drift is non-stationary (Markov factor equal to one), it is established that the constant part of a signal can only be estimated inconsistently (with non-zero asymptotic variance). The results help quantify the notions that measurements taken sooner after calibration result in more accurate inference
    corecore