5 research outputs found

    不完全な情報システムのためのラフ集合モデルと知識獲得

    Get PDF
    国立大学法人長岡技術科学大

    Distributed Random Set Theoretic Soft/Hard Data Fusion

    Get PDF
    Research on multisensor data fusion aims at providing the enabling technology to combine information from several sources in order to form a unifi ed picture. The literature work on fusion of conventional data provided by non-human (hard) sensors is vast and well-established. In comparison to conventional fusion systems where input data are generated by calibrated electronic sensor systems with well-defi ned characteristics, research on soft data fusion considers combining human-based data expressed preferably in unconstrained natural language form. Fusion of soft and hard data is even more challenging, yet necessary in some applications, and has received little attention in the past. Due to being a rather new area of research, soft/hard data fusion is still in a edging stage with even its challenging problems yet to be adequately de fined and explored. This dissertation develops a framework to enable fusion of both soft and hard data with the Random Set (RS) theory as the underlying mathematical foundation. Random set theory is an emerging theory within the data fusion community that, due to its powerful representational and computational capabilities, is gaining more and more attention among the data fusion researchers. Motivated by the unique characteristics of the random set theory and the main challenge of soft/hard data fusion systems, i.e. the need for a unifying framework capable of processing both unconventional soft data and conventional hard data, this dissertation argues in favor of a random set theoretic approach as the first step towards realizing a soft/hard data fusion framework. Several challenging problems related to soft/hard fusion systems are addressed in the proposed framework. First, an extension of the well-known Kalman lter within random set theory, called Kalman evidential filter (KEF), is adopted as a common data processing framework for both soft and hard data. Second, a novel ontology (syntax+semantics) is developed to allow for modeling soft (human-generated) data assuming target tracking as the application. Third, as soft/hard data fusion is mostly aimed at large networks of information processing, a new approach is proposed to enable distributed estimation of soft, as well as hard data, addressing the scalability requirement of such fusion systems. Fourth, a method for modeling trust in the human agents is developed, which enables the fusion system to protect itself from erroneous/misleading soft data through discounting such data on-the-fly. Fifth, leveraging the recent developments in the RS theoretic data fusion literature a novel soft data association algorithm is developed and deployed to extend the proposed target tracking framework into multi-target tracking case. Finally, the multi-target tracking framework is complemented by introducing a distributed classi fication approach applicable to target classes described with soft human-generated data. In addition, this dissertation presents a novel data-centric taxonomy of data fusion methodologies. In particular, several categories of fusion algorithms have been identifi ed and discussed based on the data-related challenging aspect(s) addressed. It is intended to provide the reader with a generic and comprehensive view of the contemporary data fusion literature, which could also serve as a reference for data fusion practitioners by providing them with conducive design guidelines, in terms of algorithm choice, regarding the specifi c data-related challenges expected in a given application

    Reconnaissance de contexte stable pour l'habitat intelligent

    Get PDF
    L'habitat intelligent est l'objet de nombreux travaux de recherche. Il permet d'assister des personnes âgées ou handicapées, d'améliorer le confort, la sécurité ou encore d'économiser de l'énergie. Aujourd'hui, l'informatique ubiquitaire se développe et s'intègre dans l'habitat intelligent notamment en apportant la sensibilité au contexte. Malheureusement, comprendre ce qui se passe dans une maison n'est pas toujours facile. Dans cette thèse, nous explicitons comment le contexte peut permettre de déployer des services adaptés aux activités et aux besoins des habitants. La compréhension du contexte passe par l'installation de capteurs mais aussi par l'abstraction des données brutes en données intelligibles facilement exploitables par des humains et des services. Nous mettons en avant une architecture multi-couches de fusion de données permettant d'obtenir des données contextuelles de niveaux d'abstraction différents. La mise en place des couches basses y est présentée en détail avec l'application de la théorie des fonctions de croyance pour l'abstraction de données brutes issues de capteurs. Enfin, sont présentés le déploiement d'un prototype nous ayant permis de valider notre approche, ainsi que les services déployés.Smart home is a major subject of interest. It helps to assist elderly or disabled people, improve comfort, safety, and also save energy. Today, ubiquitous computing is developed and integrated into the smart home providing context-awareness. Unfortunately, understanding what happens in a home is not always easy. In this thesis, we explain how context can be used to deploy services tailored to the activities and needs of residents. Understanding context requires the installation of sensors but also the abstraction of raw data into easily understandable data usable by humans and services. We present a multi-layer architecture of data fusion used to obtain contextual information of different levels of abstraction. The implementation of the lower layers is presented in detail with the application of the theory of belief functions for the abstraction of raw sensor data. Finally, are presented the deployment of a prototype that allowed us to validate our approach and the deployed services.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Seismic Risk Management

    Get PDF
    Seismic risk management is a problem of many dimensions, involving multiple inputs, interactions within risk factors, criteria, alternatives and stakeholders. The deployment of this process is inherently fraught with the issues of complexity, ambiguity and uncertainty, posing extra challenges in the assessment, modelling and management stages. The complexity of earthquake impacts and the uncertain nature of information necessitate the establishment of a systematic approach to address the risk of many effects of seismic events in a reliable and realistic way. To fulfill this need, the study applies a systematic approach to the assessment and management of seismic risk and uses an integrated risk structure. The fuzzy set theory was used as a formal mathematical basis to handle uncertainties involved within risk parameters. Throughout the process, the potential impacts of an earthquake as the basic criteria for risk assessment were identified and relations between them were accommodated through a hierarchical structure. The various impacts of an earthquake are then aggregated through a composite fuzzy seismic risk index (FSRi) to screen and prioritize the retrofitting of a group of school buildings in Iran. Given the imprecise data which is the prime challenge for development of any risk model, the proposed model demonstrates a more reliable and robust methodology to handle vague and imprecise information. The significant feature of the model is its transparency and flexibility in aggregating, tracing and monitoring the risk impacts. The novelty of this study is that it serves as the first attempt of the process of a knowledge base risk-informed system for ranking and screening the retrofitting group of school buildings. The model is capable of integrating various forms of knowledge (quantitative and qualitative information) extracted from different sources (facts, algorithms, standards and experience). The outcomes of the research collectively demonstrate that the proposed system supports seismic risk management processes effectively and efficiently
    corecore