3 research outputs found

    Precoder Design and Power Allocation for Downlink MIMO-NOMA via Simultaneous Triangularization

    Full text link
    In this paper, we consider the downlink precoder design for two-user power-domain multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems. The proposed precoding scheme is based on simultaneous triangularization and decomposes the MIMO-NOMA channels of the two users into multiple single-input single-output NOMA channels, assuming low-complexity self-interference cancellation at the users. In contrast to the precoding schemes based on simultaneous diagonalization (SD), the proposed scheme avoids inverting the MIMO channels of the users, thereby enhancing the ergodic rate performance. Furthermore, we develop a power allocation algorithm based on the convex-concave procedure, and exploit it to obtain the ergodic achievable rate region of the proposed MIMO-NOMA scheme. Our results illustrate that the proposed scheme outperforms baseline precoding schemes based on SD and orthogonal multiple access for a wide range of user rates and performs close to the dirty paper coding upper bound. The ergodic rate region can further be improved by utilizing a hybrid scheme based on time sharing between the proposed MIMO-NOMA scheme and point-to-point MIMO.Comment: Accepted for presentation at the 2021 IEEE Wireless Communications and Networking Conference. This paper is the conference version of arXiv:2006.06471 with 6pp, 2 figures, for code, see https://gitlab.com/aravindh.krishnamoorthy/mimo-nom

    Precoder Design and Statistical Power Allocation for MIMO-NOMA via User-Assisted Simultaneous Diagonalization

    Full text link
    In this paper, we investigate the downlink precoder design for two-user power-domain multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA). We propose a novel user-assisted (UA) simultaneous diagonalization (SD) based MIMO-NOMA scheme that achieves SD of the MIMO channels of both users through a combination of precoder design and low-complexity self-interference cancellation at the users, thereby considerably lowering the overall decoding complexity compared to joint decoding. The achievable ergodic user rates of the proposed scheme are analyzed for Rayleigh fading channels based on a finite-size random matrix theory framework, which is further exploited to develop a statistical power allocation algorithm. Simulation and numerical results show that the proposed UA-SD MIMO-NOMA scheme significantly outperforms orthogonal multiple access and a benchmark precoder design performing SD via generalized singular value decomposition in terms of the achievable ergodic rate region for most user rates. The ergodic rate region is further enhanced by a hybrid scheme which performs time sharing between the proposed UA-SD MIMO-NOMA scheme and single-user MIMO.Comment: Accepted by the IEEE Transactions on Communications, see DOI. 32 pages, 8 figures, for associated code, see https://gitlab.com/aravindh.krishnamoorthy/mimo-nom

    Uplink and Downlink MIMO-NOMA with Simultaneous Triangularization

    Full text link
    In this paper, we consider the uplink and downlink precoder design for two-user power-domain multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems. We propose novel uplink and downlink precoding and decoding schemes that lower the decoding complexity at the receiver by decomposing the MIMO-NOMA channels of the users into multiple single-input single-output (SISO)-NOMA channels via simultaneous triangularization (ST) of the MIMO channels of the users and a low-complexity self-interference cancellation at the receiver. The proposed ST MIMO-NOMA schemes avoid channel inversion at transmitter and receiver and take advantage of the null spaces of the MIMO channels of the users, which is beneficial for the ergodic achievable rate performance. We characterize the maximum ergodic achievable rate regions of the proposed uplink and downlink ST MIMO-NOMA schemes, and compare them with respective upper bounds, baseline MIMO-NOMA precoding schemes, and orthogonal multiple access (OMA). Our results illustrate that the proposed schemes significantly outperform the considered baseline MIMO-NOMA precoding schemes and OMA, and have a small gap to the respective upper bounds for most channel conditions and user rates. Moreover, we show that a hybrid scheme, which performs time sharing between the proposed uplink and downlink ST MIMO-NOMA and single-user MIMO, can improve performance even further.Comment: Accepted by the IEEE Transactions on Wireless Communications. This is the journal version of the submission arXiv:2006.04581 with 33 pages, 10 figures, and 2 tables. For associated code see https://gitlab.com/aravindh.krishnamoorthy/mimo-nom
    corecore