739 research outputs found

    Development of a Voice Controlled Electric Wheelchair to Aid the Movement of the Physically Challenged

    Get PDF
    Nigeria is said to have the highest number of physically challenged in Africa and second only to India in the world. Traditional Electrical Wheel Chair has some limitations. In order to assist the physically handicapped, this paper presents the development of a voice controlled wheelchair. The user can control the wheelchair by voice commands, such as “jagaba (go forward)” in Hausa. A grammar-based recognition parser was used in the system. The system comprises of a wheelchair motorize by a DC motor, works on inputs such as voice commands via an android phone and navigates according to the command and battery powered. Voice command input was taken from android mobile and converted into text which is transmitted to microcontroller via Bluetooth module to control the operation of DC motors. Also an IR detection system was used to detect the obstacle in the path of wheelchair to avoid its collision. The chair enables the handicapped person to independently move around. A running experiment with three (3) persons was carried out on speech recognition. 95.4% and 94.0% of the movement command and the verification command were obtained respectively. Keywords: Control, Home Navigation System, Microcontroller, Physically Challenged, Voice Command, Voice Recognition and Wheelchair

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Gyro-Accelerometer based Control of an Intelligent Wheelchair

    Get PDF
    This paper presents a free-hand interface to control an electric wheelchair using the head gesture for people with severe disabilities i.e. multiple sclerosis, quadriplegic patients and old age people. The patient head acceleration and rotation rate are used to control the intelligent wheelchair. The patient head gesture is detected using accelerometer and gyroscope sensors embedded on a single board MPU6050. The MEMS sensors outputs are combined using Kalman filter as sensor fusion to build a high accurate orientation sensor. The system uses an Arduino mega as microcontroller to perform data processing, sensor fusion and joystick emulation to control the intelligent wheelchair and HC-SR04 ultrasonic sensors to provide safe navigation.The wheelchair can be controlled using two modes. In the first mode, the wheelchair is controlled by the usual joystick. In the second mode, the patient uses his head motion to control the wheelchair. The principal advantage of the proposed approach is that the switching between the two control modes is soft, straightforward and transparent to the user

    Autonomous wheelchair with a smart driving mode and a Wi-Fi positioning system

    Get PDF
    Wheelchairs are an important aid that enhances the mobility of people with several types of disabilities. Therefore, there has been considerable research and development on wheelchairs to meet the needs of the disabled. Since the early manual wheelchairs to their more recent electric powered counterparts, advancements have focused on improving autonomy in mobility. Other developments, such as Internet advancements, have developed the concept of the Internet of Things (IoT). This is a promising area that has been studied to enhance the independent operation of the electrical wheelchairs by enabling autonomous navigation and obstacle avoidance. This dissertation describes shortly the design of an autonomous wheelchair of the IPL/IT (Instituto Politécnico de Leiria/Instituto de Telecomunicações) with smart driving features for persons with visual impairments. The objective is to improve the prototype of an intelligent wheelchair. The first prototype of the wheelchair was built to control it by voice, ocular movements, and GPS (Global Positioning System). Furthermore, the IPL/IT wheelchair acquired a remote control feature which could prove useful for persons with low levels of visual impairment. This tele-assistance mode will be helpful to the family of the wheelchair user or, simply, to a health care assistant. Indoor and outdoor positioning systems, with printed directional Wi-Fi antennas, have been deployed to enable a precise location of our wheelchair. The underlying framework for the wheelchair system is the IPL/IT low cost autonomous wheelchair prototype that is based on IoT technology for improved affordability

    Development of a Voice-Controlled Human-Robot Interface

    Get PDF
    The goal of this thesis is to develop a voice-controlled human-robot interface (HRI) which allows a person to control and communicate with a robot. Dragon NaturallySpeaking, a commercially available automatic speech recognition engine, was chosen for the development of the proposed HRI. In order to achieve the goal, the Dragon software is used to create custom commands (or macros) which must satisfy the tasks of (a) directly controlling the robot with voice, (b) writing a robot program with voice, and (c) developing a HRI which allows the human and robot to communicate with each other using speech. The key is to generate keystrokes upon recognizing the speech and three types of macro including step-by-step, macro recorder, and advanced scripting. Experiment was conducted in three phases to test the functionality of the developed macros in accomplishing all three tasks. The result showed that advanced scripting macro is the only type of macro that works. It is also the most suitable for the task because it is quick and easy to create and can be used to develop flexible and natural voice command. Since the output of macro is a series of keystrokes, which forms a syntax for the robot program, macros developed by the Dragon software can be used to communicate with virtually any robots by making an adjustment on the output keystroke

    The 2nd Conference on Remotely Manned Systems (RMS): Technology and Applications

    Get PDF
    Control theory and the design of manipulators, teleoperators, and robots are considered. Applications of remotely manned vehicles to space maintenance and orbital assembly, industry and productivity, undersea operations, and rehabilitation systems are emphasized

    Wheelchair control using EEG signal classification

    Get PDF
    Tato diplomová práce představuje koncept elektrického invalidního vozíku ovládaného lidskou myslí. Tento koncept je určen pro osoby, které elektrický invalidní vozík nemohou ovládat klasickými způsoby, jakým je například joystick. V práci jsou popsány čtyři hlavní komponenty konceptu: elektroencefalograf, brain-computer interface (rozhraní mozek-počítač), systém sdílené kontroly a samotný elektrický invalidní vozík. V textu je představena použitá metodologie a výsledky provedených experimentů. V závěru jsou nastíněna doporučení pro budoucí vývoj.This diploma thesis presents the concept of mind-controlled electric wheelchair designed for people who are not able to use other interfaces such as hand joystick. Four main components of concept are described: electroencephalography, brain-computer interface, shared control and the electric wheelchair. In the text used methodology is described and results of conducted experiments are presented. In conclusion suggestions for future development are outlined.

    Classificação de pacientes para adaptação de cadeira de rodas inteligente

    Get PDF
    Doutoramento em Engenharia InformáticaA importância e preocupação dedicadas à autonomia e independência das pessoas idosas e dos pacientes que sofrem de algum tipo de deficiência tem vindo a aumentar significativamente ao longo das últimas décadas. As cadeiras de rodas inteligentes (CRI) são tecnologias que podem ajudar este tipo de população a aumentar a sua autonomia, sendo atualmente uma área de investigação bastante ativa. Contudo, a adaptação das CRIs a pacientes específicos e a realização de experiências com utilizadores reais são assuntos de estudo ainda muito pouco aprofundados. A cadeira de rodas inteligente, desenvolvida no âmbito do Projeto IntellWheels, é controlada a alto nível utilizando uma interface multimodal flexível, recorrendo a comandos de voz, expressões faciais, movimentos de cabeça e através de joystick. Este trabalho teve como finalidade a adaptação automática da CRI atendendo às características dos potenciais utilizadores. Foi desenvolvida uma metodologia capaz de criar um modelo do utilizador. A investigação foi baseada num sistema de recolha de dados que permite obter e armazenar dados de voz, expressões faciais, movimentos de cabeça e do corpo dos pacientes. A utilização da CRI pode ser efetuada em diferentes situações em ambiente real e simulado e um jogo sério foi desenvolvido permitindo especificar um conjunto de tarefas a ser realizado pelos utilizadores. Os dados foram analisados recorrendo a métodos de extração de conhecimento, de modo a obter o modelo dos utilizadores. Usando os resultados obtidos pelo sistema de classificação, foi criada uma metodologia que permite selecionar a melhor interface e linguagem de comando da cadeira para cada utilizador. A avaliação para validação da abordagem foi realizada no âmbito do Projeto FCT/RIPD/ADA/109636/2009 - "IntellWheels - Intelligent Wheelchair with Flexible Multimodal Interface". As experiências envolveram um vasto conjunto de indivíduos que sofrem de diversos níveis de deficiência, em estreita colaboração com a Escola Superior de Tecnologia de Saúde do Porto e a Associação do Porto de Paralisia Cerebral. Os dados recolhidos através das experiências de navegação na CRI foram acompanhados por questionários preenchidos pelos utilizadores. Estes dados foram analisados estatisticamente, a fim de provar a eficácia e usabilidade na adequação da interface da CRI ao utilizador. Os resultados mostraram, em ambiente simulado, um valor de usabilidade do sistema de 67, baseado na opinião de uma amostra de pacientes que apresentam os graus IV e V (os mais severos) de Paralisia Cerebral. Foi também demonstrado estatisticamente que a interface atribuída automaticamente pela ferramenta tem uma avaliação superior à sugerida pelos técnicos de Terapia Ocupacional, mostrando a possibilidade de atribuir automaticamente uma linguagem de comando adaptada a cada utilizador. Experiências realizadas com distintos modos de controlo revelaram a preferência dos utilizadores por um controlo compartilhado com um nível de ajuda associado ao nível de constrangimento do paciente. Em conclusão, este trabalho demonstra que é possível adaptar automaticamente uma CRI ao utilizador com claros benefícios a nível de usabilidade e segurança.The importance and concern given to the autonomy and independence of elderly people and patients suffering from some kind of disability has been growing significantly in the last few decades. Intelligent wheelchairs (IW) are technologies that can increase the autonomy and independence of this kind of population and are nowadays a very active research area. However, the adaptations to users’ specificities and experiments with real users are topics that lack deeper studies. The intelligent wheelchair, developed in the context of the IntellWheels project, is controlled at a high-level through a flexible multimodal interface, using voice commands, facial expressions, head movements and joystick as its main input modalities. This work intended to develop a system enabling the automatic adaptation, to the user characteristics, of the previously developed intelligent wheelchair. A methodology was created enabling the creation of a user model. The research was based on the development of a data gathering system, enabling the collection and storage of data from voice commands, facial expressions, head and body movements from several patients with distinct disabilities such as Cerebral Palsy. The wheelchair can be used in different situations in real and simulated environments and a serious game was developed where different tasks may be performed by users. Data was analysed using knowledge discovery methods in order to create an automatic patient classification system. Based on the classification system, a methodology was developed enabling to select the best wheelchair interface and command language for each patient. Evaluation was performed in the context of Project FCT/RIPD/ADA/109636/ 2009 – “IntellWheels – Intelligent Wheelchair with Flexible Multimodal Interface”. Experiments were conducted, using a large set of patients suffering from severe physical constraints in close collaboration with Escola Superior de Tecnologia de Saúde do Porto and Associação do Porto de Paralisia Cerebral. The experiments using the intelligent wheelchair were followed by user questionnaires. The results were statistically analysed in order to prove the effectiveness and usability of the adaptation of the Intelligent Wheelchair multimodal interface to the user characteristics. The results obtained in a simulated environment showed a 67 score on the system usability scale based in the opinion of a sample of cerebral palsy patients with the most severe cases IV and V of the Gross Motor Function Scale. It was also statistically demonstrated that the data analysis system advised the use of an adapted interface with higher evaluation than the one suggested by the occupational therapists, showing the usefulness of defining a command language adapted to each user. Experiments conducted with distinct control modes revealed the users' preference for a shared control with an aid level taking into account the level of constraint of the patient. In conclusion, this work demonstrates that it is possible to adapt an intelligent wheelchair to the user with clear usability and safety benefits
    corecore