376 research outputs found

    Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Get PDF

    Stability and Performance Metrics for Adaptive Flight Control

    Get PDF
    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers

    Preliminary study towards the definition of a PHM framework for the hydraulic system of a fly-by-wire helicopter

    Get PDF
    On-board hydraulic systems are tasked to provide a number of critical functions to ensure the in-flight operability of rotary-wings vehicles; the hydraulic system is needed to supply power to the flight control actuators and a number of other utilities, as well as to condition the hydraulic fluid, under a wide range of possible in-service conditions. Being a flight-critical system, the definition of a Prognostics and Health Management framework would provide significant advantages to the users, such as better risk mitigation and improved availability. Moreover, a significant reduction in the occurrences of unpredicted failures, one of the more known downsides of helicopters, is expected. A preliminary analysis on the effects of the inception and progression of several degradation types is the first step assess the feasibility of a PHM system for new platforms, and which failure modes are more likely to be observed. Further, since several key components are frequently provided by different suppliers to the airframer, this preliminary analysis would allow to better assess if an Integrated Vehicle Health Management approach, integrating signals coming from different components, could be beneficial. To pursue this study, a complete model of the hydraulic system for a flyby-wire helicopter has been prepared. Then, an in-depth simulation campaign was pursued with the aim of studying the interactions between different failure modes, the effects that the propagating degradations have on the system performances and which signals can be used to define a robust set of features. The paper introduces the case-study under analysis, a general configuration for fly-by-wire helicopters, presenting the most prominent peculiarities of the system and the effect of such peculiarities on the definition of health monitoring schemes. The model is then used to describe the behavior of the system under nominal and degraded conditions is introduced. Between the possible failure modes, the interaction between wear in several mechanical components and the clogging of the hydraulic lines filters was chosen as the subject of this study; motivations are provided and the degradation model described in detail. Hence, results of a wide-ranging simulation campaign are presented, where the time-domain response of the system is used to guide in the definition of a proper set of features able to characterize the selected fault cases. Selected features are presented, chosen according to significant metrics such as correlation with the simulated degradations, signal-to-noise ratio and accuracy. Two different approaches with a varying degree of integration between system signals are proposed and compared. Prognostics is then pursued through well-known particle filter algorithms. The analysis provides promising results on the capability of successfully detecting, isolating and identifying the selected fault mode; laying the foundations for further and more comprehensive studies on the subject

    Neural networks-based command filtering control for a table-mount experimental helicopter

    Get PDF
    This paper presents neural networks based on command filtering control method for a table-mount experimental helicopter which has three rotational degrees-of-freedom. First, the controller is designed based on backstepping technique, and further command filtering technique is used to solve the derivative of the virtual control, thereby avoiding the effects of signal noise. Secondly, the model uncertainty of the table-mount experimental helicopter's system is estimated by using neural networks. And then, Lyapunov stabilization analysis proves the stability of the table-mount experimental helicopter closedloop attitude tracking system. Finally, the experiment is carried out to clarify the effectiveness of the proposed method. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved

    Dynamics estimator based robust fault-tolerant control for VTOL UAVs trajectory tracking

    Get PDF
    This paper investigates the control issue of the trajectory tracking of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs) in the presence of partial propeller fault and external disturbance. In particular, a robust passive fault-tolerant control strategy is proposed by introducing a first-order filter based dynamics estimator. First, a bounded force command is exploited by employing a new smooth saturation function in the output of the estimator. A sufficient condition in terms of a specified parameter selection criteria is provided to ensure the nonsingularity extraction of the command attitude. Then, a torque command is applied to the attitude loop tracking. Since there is merely one filter parameter involved in the dynamics estimator, the practical implementation and parameter tuning can be significantly simplified. Stability analysis indicates that the proposed control strategy guarantees the semi-globally ultimately bounded tracking of VTOL UAVs subject to partial propeller fault and external disturbance. Simulation and experiment results with comparison examples are performed to validate the effectiveness of the proposed strategy. Experimental results show that the proposed strategy achieves the trajectory tracking with a good performance (mean deviation 0.0074 m and standard deviation 0.1202 m) in the presence of 35% propeller fault and 4 m/s persistent wind disturbance

    Automatic Flight Control System Design for a Jet Aircraft

    Get PDF
    Tato bakalářská práce se zabýva modelováním letových vlastností proudového letadla a následným návrhem a implementací systému pro automatické řízení letu. Jejím cílem bylo na základě veřejně dostupných aerodynamických dat letounu F-16, který má sníženou podélnou stabilitu, implementovat model tohoto letounu a použít tento model jako platformu pro návrh a implementaci systému pro automatické řízení letu založeného na nelineární dynamické inverzi se soustředením se na řízení podélného pohybu letounu, pomocí nastavení požadovaného úhlu náběhu. Testy vytvořeného systému prokázali schopnost dosáhnout a udržet požadovaný úhel náběhu.This bachelor's thesis deals with the modelling of flight characteristics of a jet airplane and subsequent design and implementation of an automatic flight control system. Its goal was to implement a model of a jet airplane based on publicly available aerodynamic data of F-16 aircraft and use this model as a platform for the design and implementation of an automatic flight control system based on the non-linear dynamic inversion with a focus on controlling the pitch angle of an airplane by setting a desired value of the angle of attack. Conducted tests of the created system proved the ability of the control system to reach and maintain the desired angle of attack.

    Adaptive control of hypersonic vehicles

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 105-109).The guidance, navigation and control of hypersonic vehicles are highly challenging tasks due to the fact that the dynamics of the airframe, propulsion system and structure are integrated and highly interactive. Such a coupling makes it difficult to model various components with a requisite degree of accuracy. This in turn makes various control tasks including altitude and velocity command tracking in the cruise phase of the flight extremely difficult. This work proposes an adaptive controller for a hypersonic cruise vehicle subject to: aerodynamic uncertainties, center-of-gravity movements, actuator saturation, failures, and time-delays. The adaptive control architecture is based on a linearized model of the underlying rigid body dynamics and explicitly accommodates for all uncertainties. Within the control structure is a baseline Proportional Integral Filter commonly used in optimal control designs. The control design is validated using a highfidelity HSV model that incorporates various effects including coupling between structural modes and aerodynamics, and thrust pitch coupling. Analysis of the Adaptive Robust Controller for Hypersonic Vehicles (ARCH) is carried out using a control verification methodology. This methodology illustrates the resilience of the controller to the uncertainties mentioned above for a set of closed-loop requirements that prevent excessive structural loading, poor tracking performance, and engine stalls. This analysis enables the quantification of the improvements that result from using and adaptive controller for a typical maneuver in the V-h space under cruise conditions.by Travis Eli Gibson.S.M

    Bridging the gap between theory and practice in LPV fault detection for flight control actuators

    Get PDF
    Two different approaches for fault detection,the geometric and the detection filter based methods,are compared in the paper from practical aspects,using the linear parameter-varying (LPV) framework. Presenting two designs allows a comparison of global, system level, and local component level fault detection methods with special emphasis on their relevance to aircraft industry.Practical engineering design decisions are highlighted via applying them to a high-fidelity commercial aircraft problem. The successive steps of the design, including fault modelling, LPV model generation, and LPV FDI filter synthesis, including implementation aspects, are discussed. Results are presented according to the industrial assessment perspectives phrased within the EU ADDSAFE project

    Braking Availability Tester (BAT) for Winter Runway

    Get PDF
    This thesis is concerned with the development of a new measurement device for the realistic assessment of braking capability of landing airplanes for winter runways. Landing represents one of the most safety-critical phases of aircraft operation. Aircraft runway excursion incidents occur due to the unpredictability of the runway pavement condition. This is especially true during winter time when the runway is often covered by deformable contaminants. Several accidents are discussed that list the deteriorated condition of the runway pavement and the inability to accurately report this condition as the main causes for the excursions. The accuracy of the approaches currently adopted by the airport authorities around the world to monitor the condition of the runway pavement are evaluated. The conventional and current practice of runway condition monitoring is focused on identifying the maximum tire-pavement frictional drag mu value and often neglects the characteristics of actual aircraft brake control system as well as the comprehensive effects coming from various factors such as deformable contaminants on the winter runway. The braking availability tester discussed here is designed to take a different approach for the realistic assessment of braking availability of landing aircrafts. The main idea of this device is to mimic the braking operation of actual aircrafts as closely as possible by incorporating the same brake mechanism and the brake control system used in existing aircrafts. The architecture of the device from the ground-up including the suite of sensors, the structure of the wheel, important actuators, and the real-time brake control system are discussed in detail. More importantly, the operational principles of the braking availability tester (BAT) are outlined which help one understand how the system works together. A new method to quantify the braking availability on the runway using the BAT is explained. The testing and data collection strategy for implementing this technique is also outlined. Additionally, the results from preliminary tests are presented to verify the functionality of the BAT. The results are used to verify that the BAT operates with the brake control system of an aircraft. Finally, experimental data sets from dry and contaminated pavement testing are presented to show the effect of different weather conditions on the operation of the BAT
    corecore