682 research outputs found

    A Packetized Direct Load Control Mechanism for Demand Side Management

    Full text link
    Electricity peaks can be harmful to grid stability and result in additional generation costs to balance supply with demand. By developing a network of smart appliances together with a quasi-decentralized control protocol, direct load control (DLC) provides an opportunity to reduce peak consumption by directly controlling the on/off switch of the networked appliances. This paper proposes a packetized DLC (PDLC) solution that is illustrated by an application to air conditioning temperature control. Here the term packetized refers to a fixed time energy usage authorization. The consumers in each room choose their preferred set point, and then an operator of the local appliance pool will determine the comfort band around the set point. We use a thermal dynamic model to investigate the duty cycle of thermostatic appliances. Three theorems are proposed in this paper. The first two theorems evaluate the performance of the PDLC in both transient and steady state operation. The first theorem proves that the average room temperature would converge to the average room set point with fixed number of packets applied in each discrete interval. The second theorem proves that the PDLC solution guarantees to control the temperature of all the rooms within their individual comfort bands. The third theorem proposes an allocation method to link the results in theorem 1 and assumptions in theorem 2 such that the overall PDLC solution works. The direct result of the theorems is that we can reduce the consumption oscillation that occurs when no control is applied. Simulation is provided to verify theoretical results.Comment: the 51st IEEE Conference on Decision and Control,December 10-13, Maui, 201

    Bridging the Flexibility Concepts in the Buildings and Multi-energy Domains

    Get PDF
    paper aims to stimulate a discussion on how to create a bridge between the concept of flexibility used in power and energy systems and the flexibility that buildings can offer for providing services to the electrical system. The paper recalls the main concepts and approaches considered in the power systems and multi-energy systems, and summarises some aspects of flexibility in buildings. The overview shows that there is room to strengthen the contacts among the scientists operating in these fields. The common aim is to identify the complementary aspects and provide inputs to enhance the methodologies and models to enable and support an effective energy and ecologic transition

    Fast-timescale Control Strategies for Demand Response in Power Systems.

    Full text link
    Concerns over climate change have spurred an increase in the amount of wind and solar power generation on the grid. While these resources reduce carbon emissions, the physical phenomena that they rely on - wind and sunlight - are highly stochastic, making their generated power less controllable. Demand-side strategies, which modulate load in a controllable manner, have been proposed as a way to add flexibility to the grid. Resources with innate flexibility in their load profile are particularly suited to demand response (DR) applications. This work examines two such loads: heating, ventilation, and air conditioning (HVAC) systems, and plug-in electric vehicle (PEV) fleets. HVAC systems can vary the timing of power consumption due to the thermal inertia inherent in their associated building(s). The first part of this thesis explores the efficacy of using commercial HVAC for DR applications. Results are presented from an experimental testbed that quantify performance, in terms of accuracy in perturbing the load in a desired manner, as well as the efficiency of this process. PEVs offer very fast response times and may eventually represent a significant load on the power system. The second part of this thesis develops several control strategies to manage PEV power consumption in an environment where communication resources are limited, both to prevent detrimental system effects such as transformer overload, and to provide ancillary services such as frequency regulation to the grid.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116627/1/ianbeil_1.pd

    COHORT: Coordination of Heterogeneous Thermostatically Controlled Loads for Demand Flexibility

    Full text link
    Demand flexibility is increasingly important for power grids. Careful coordination of thermostatically controlled loads (TCLs) can modulate energy demand, decrease operating costs, and increase grid resiliency. We propose a novel distributed control framework for the Coordination Of HeterOgeneous Residential Thermostatically controlled loads (COHORT). COHORT is a practical, scalable, and versatile solution that coordinates a population of TCLs to jointly optimize a grid-level objective, while satisfying each TCL's end-use requirements and operational constraints. To achieve that, we decompose the grid-scale problem into subproblems and coordinate their solutions to find the global optimum using the alternating direction method of multipliers (ADMM). The TCLs' local problems are distributed to and computed in parallel at each TCL, making COHORT highly scalable and privacy-preserving. While each TCL poses combinatorial and non-convex constraints, we characterize these constraints as a convex set through relaxation, thereby making COHORT computationally viable over long planning horizons. After coordination, each TCL is responsible for its own control and tracks the agreed-upon power trajectory with its preferred strategy. In this work, we translate continuous power back to discrete on/off actuation, using pulse width modulation. COHORT is generalizable to a wide range of grid objectives, which we demonstrate through three distinct use cases: generation following, minimizing ramping, and peak load curtailment. In a notable experiment, we validated our approach through a hardware-in-the-loop simulation, including a real-world air conditioner (AC) controlled via a smart thermostat, and simulated instances of ACs modeled after real-world data traces. During the 15-day experimental period, COHORT reduced daily peak loads by an average of 12.5% and maintained comfortable temperatures.Comment: Accepted to ACM BuildSys 2020; 10 page

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations

    Energy management for user’s thermal and power needs:A survey

    Get PDF
    The increasing world energy consumption, the diversity in energy sources, and the pressing environmental goals have made the energy supply–demand balance a major challenge. Additionally, as reducing energy costs is a crucial target in the short term, while sustainability is essential in the long term, the challenge is twofold and contains clashing goals. A more sustainable system and end-users’ behavior can be promoted by offering economic incentives to manage energy use, while saving on energy bills. In this paper, we survey the state-of-the-art in energy management systems for operation scheduling of distributed energy resources and satisfying end-user’s electrical and thermal demands. We address questions such as: how can the energy management problem be formulated? Which are the most common optimization methods and how to deal with forecast uncertainties? Quantitatively, what kind of improvements can be obtained? We provide a novel overview of concepts, models, techniques, and potential economic and emission savings to enhance energy management systems design
    • …
    corecore