557 research outputs found

    Predictive Control of HCCI Engines Using Physical Models

    Get PDF
    Homogeneous Charge Compression Ignition (HCCI) is a promising internal combustion engine concept. It holds promise of combining low emission levels with high efficiency. However, as ignition timing in HCCI operation lacks direct actuation and is highly sensitive to operating conditions and disturbances, robust closed-loop control is necessary. To facilitate control design and allow for porting of both models and the resulting controllers between different engines, physics-based mathematical models of HCCI are of interest. This thesis presents work on a physical model of HCCI including cylinder wall temperature and evaluates predictive controllers based on linearizations of the model. The model was derived using first principles modeling and is given on a cycle-to-cycle basis. Measurement data including cylinder wall temperature measurements was used for calibration and validation of the model. A predictive controller for combined control of work output and combustion phasing was designed and evaluated in simulation. The resulting controller was validated on a real engine. The last part of the work was an experimental evaluation of predictive combustion phasing control. The control performance was evaluated in terms of response time and steady-state output variance

    Visualization of the homogeneous charge compression ignition/controlled autoignition combustion process using two-dimensional planar laser-induced fluorescence imaging of formaldehyde

    Get PDF
    The paper reports an investigation into the HCCI/CAI combustion process using the two-dimensional PLIF technique. The PLIF of formaldehyde formed during the low-temperature reactions of HCCI/CAI combustion was exciting by a tunable dye laser at 355nm wavelength and detected by a gated ICCD camera. Times and locations of the two-stage autoignition of HCCI/CAI combustion were observed in a single cylinder optical engine for several fuel blends mixed with n-heptane and iso-octane. The results show, when pure n-heptane was used, the initial formation of formaldehyde and its subsequent burning were closely related to the start of the low temperature heat release stage and the start of the main heat release stage of HCCI combustion respectively. Meanwhile, it was found that the formation of formaldehyde was more affected by the charge temperature than by the fuel concentration. But its subsequent burning or the start of main heat release combustion toke place at those areas where both the fuel concentration and the charge temperature were sufficient high. As a result, it was found that the presence of stratified residual gases affected both the spatial location and the temporal site of autoignition in a HCCI/CAI combustion engine. All studied fuels were found having similar formaldehyde formation timings with n-heptane. This means that the presence of iso-octane did not affect the start of low temperature reactions apparently. However, the heat release during low temperature reaction was significantly reduced with the presence of iso-octane in the studied fuels. In addition, the presence of iso-octane retarded the start of the main combustion stage

    MODELING AND EXPERIMENTAL SETUP OF AN HCCI ENGINE

    Get PDF
    For the past three decades the automotive industry is facing two main conflicting challenges to improve fuel economy and meet emissions standards. This has driven the engineers and researchers around the world to develop engines and powertrain which can meet these two daunting challenges. Focusing on the internal combustion engines there are very few options to enhance their performance beyond the current standards without increasing the price considerably. The Homogeneous Charge Compression Ignition (HCCI) engine technology is one of the combustion techniques which has the potential to partially meet the current critical challenges including CAFE standards and stringent EPA emissions standards. HCCI works on very lean mixtures compared to current SI engines, resulting in very low combustion temperatures and ultra-low NOx emissions. These engines when controlled accurately result in ultra-low soot formation. On the other hand HCCI engines face a problem of high unburnt hydrocarbon and carbon monoxide emissions. This technology also faces acute combustion controls problem, which if not dealt properly with yields highly unfavorable operating conditions and exhaust emissions. This thesis contains two main parts. One part deals in developing an HCCI experimental setup and the other focusses on developing a grey box modelling technique to control HCCI exhaust gas emissions. The experimental part gives the complete details on modification made on the stock engine to run in HCCI mode. This part also comprises details and specifications of all the sensors, actuators and other auxiliary parts attached to the conventional SI engine in order to run and monitor the engine in SI mode and future SI-HCCI mode switching studies. In the latter part around 600 data points from two different HCCI setups for two different engines are studied. A grey-box model for emission prediction is developed. The grey box model is trained with the use of 75% data and the remaining data is used for validation purpose. An average of 70% increase in accuracy for predicting engine performance is found while using the grey-box over an empirical (black box) model during this study. The grey-box model provides a solution for the difficulty faced for real time control of an HCCI engine. The grey-box model in this thesis is the first study in literature to develop a control oriented model for predicting HCCI engine emissions for control

    Closed-Loop Control of HCCI Engine Dynamics

    Get PDF
    The topic of the thesis is control of Homogeneous Charge Compression Ignition (HCCI) engine dynamics. HCCI offers a potential to combine high efficiency with very low emissions. In order to fulfill the potential benefits, closed-loop control is needed. The thesis discusses sensors, feedback signals and actuators for closed-loop control of the HCCI combustion. Closed-loop control of the HCCI combustion using ion current is demonstrated. Models of the HCCI dynamics suitable for purposes of control design are presented. It is shown that low-order models are sufficient to describe the HCCI dynamics. Models of HCCI combustion have been determined both by system identification and by physical modeling. Different methods for characterizing and controlling the HCCI combustion are outlined and demonstrated. In cases where the combustion phasing in a six-cylinder heavy-duty engine was controlled, either by a Variable Valve Actuation system using the inlet valve or a dual-fuel system, results are presented. Combustion phasing is a limiting factor of the load control and emission control performance. A system where control of HCCI on a cycle-to-cycle basis is outlined and cylinder individual cycle-to-cycle control on a six-cylinder heavy duty engine is presented. Various control strategies are compared. Model-based control, such as LQG and Model Predictive Control MPC, and PID control are shown to give satisfactory controller performance. An MPC controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure

    Autoignition and Chemical-Kinetic Mechanisms of Homogeneous Charge Compression Ignition Combustion for the Fuels with Various Autoignition Reactivity

    Get PDF
    This work demonstrates the autoignition and chemical-kinetic mechanisms of homogeneous charge compression ignition (HCCI) combustion for the fuels with various autoignition reactivity. This is done for four fuels: methane, dimethyl ether (DME), iso-octane and n-heptane. Methane and iso-octane are selected as the single-stage ignition fuel, and DME and n-heptane are selected as the two-stage ignition fuel. As a tool for understanding the characteristics of autoignition and combustion process in HCCI engine, a zero-dimensional single-zone engine model of ‘CHEMKIN’ in Chemkin-Pro was used. The complete compression and expansion strokes were modeled using an engine with a connecting-rod length to crank-radius ratio of 3.5 and a compression ratio of 13. A detailed chemical-kinetic mechanism for methane and DME is Mech_56.54 (113 species and 710 reactions). For iso-octane and n-heptane, a detailed chemical-kinetic mechanism from Lawrence Livermore National Laboratory (1034 species and 4236 reactions) is used. The results show that methane and iso-octane exhibit only the main heat release, ‘high-temperature heat release (HTHR)’ by high-temperature reactions (HTR). In contrast, both DME and n-heptane exhibit the first heat release ‘low-temperature heat release (LTHR)’ associated with low-temperature reactions (LTR) before HTHR

    EXPERIMENTAL SETUP AND CONTROLLER DESIGN FOR AN HCCI ENGINE

    Get PDF
    Homogeneous charged compression ignition (HCCI) is a promising combustion mode for internal combustion (IC) engines. HCCI engines have very low NOx and soot emission and low fuel consumption compared to traditional engines. The aim of this thesis is divided into two main parts: (1) engine instrumentation with a step towards converting a gasoline turbocharged direct injection (GTDI) engine to an HCCI engine; and (2) developing controller for adjusting the crank angle at 50% mass fuel burn (CA50), exhaust gas temperature Texh, and indicated mean effective pressure (IMEP) of a single cylinder Ricardo HCCI engine. The base GTDI engine is modified by adding an air heater, inter-cooler, and exhaust gas recirculation (EGR) in the intake and exhaust loops. dSPACE control units are programmed for adding monitoring sensors and implementing actuators in the engine. Control logics for actuating electronic throttle control (ETC) valve, EGR valve, and port fuel injector (PFI) are developed using the rapid control prototyping (RCP) feature of dSPACE. A control logic for crank/cam synchronization to determine engine crank angle with respect to firing top dead center (TDC) is implemented and validated using in-cylinder pressure sensor data. A control oriented model (COM) is developed for estimating engine parameters including CA50, Texh, and IMEP for a single cylinder Ricardo engine. The COM is validated using experimental data for steady state and transient engine operating conditions. A novel three-input three-output controller is developed and tested on a detailed physical HCCI engine plant model. Two type of controller design approaches are used for designing HCCI controllers: (1) empirical, and (2) model-based. A discrete sub-optimal sliding mode controller (DSSMC) is designed as a model-based controller to control CA50 and Texh, and a PI controller is designed to control IMEP. The results show that the designed controllers can successfully track the reference trajectories and can reject the external disturbances within the given operating region
    • …
    corecore