462 research outputs found

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions

    Get PDF
    Numerous technical scenarios have been developed to facilitate a human return to the Moon, and as a testbed for a subsequent mission to Mars. Crews appointed with constructing and establishing planetary bases will require a superior level of physical ability to cope with the operational demands. However, the challenging environments of nearby planets (e.g. geological, atmospheric, gravitational conditions) as well as the lengthy journeys through microgravity, will lead to progressive tissue degradation and an increased susceptibility to injury. The isolation, distance and inability to evacuate in an emergency will require autonomous medical support, as well as a range of facilities and specialised equipment to repair tissue damage on-site. Here, we discuss the design requirements of such a facility, in the form of a habitat that would concomitantly allow tissue substitute production, maintenance and surgical implantation, with an emphasis on connective tissues. The requirements for the individual modules and their operation are identified. Several concepts are assessed, including the presence of adjacent wet lab and medical modules supporting the gradual implementation of regenerative biomaterials and acellular tissue substitutes, leading to eventual tissue grafts and, in subsequent decades, potential tissues/organ-like structures. The latter, currently in early phases of development, are assessed particularly for researching the effects of extreme conditions on representative analogues for astronaut health support. Technical solutions are discussed for bioengineering in an isolated planetary environment with hypogravity, from fluid-gel bath suspended manufacture to cryostorage, cell sourcing and on-site resource utilisation for laboratory infrastructure. Surgical considerations are also discussed.National Centre for the Replacement Refinement and Reduction of Animals in Research (NC3Rs): NC/S001859/1 and NC/X000907/

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    A Systematic Literature Review of Drone Utility in Railway Condition Monitoring

    Get PDF
    Raj Bridgelall is the program director for the Upper Great Plains Transportation Institute (UGPTI) Center for Surface Mobility Applications & Real-time Simulation environments (SMARTSeSM).Drones have recently become a new tool in railway inspection and monitoring (RIM) worldwide, but there is still a lack of information about the specific benefits and costs. This study conducts a systematic literature review (SLR) of the applications, opportunities, and challenges of using drones for RIM. The SLR technique yielded 47 articles filtered from 7,900 publications from 2014 to 2022. The SLR found that key motivations for using drones in RIM are to reduce costs, improve safety, save time, improve mobility, increase flexibility, and enhance reliability. Nearly all the applications fit into the categories of defect identification, situation assessment, rail network mapping, infrastructure asset monitoring, track condition monitoring, and obstruction detection. The authors assessed the open technical, safety, and regulatory challenges. The authors also contributed a cost analysis framework, identified factors that affect drone performance in RIM, and offered implications for new theories, management, and impacts to society.The authors conducted this work with support from North Dakota State University and the Mountain-Plains Consortium, a University Transportation Center funded by the U.S. Department of Transportation.https://www.ugpti.org/about/staff/viewbio.php?id=7

    Towards Robot Autonomy in Medical Procedures Via Visual Localization and Motion Planning

    Get PDF
    Robots performing medical procedures with autonomous capabilities have the potential to positively effect patient care and healthcare system efficiency. These benefits can be realized by autonomous robots facilitating novel procedures, increasing operative efficiency, standardizing intra- and inter-physician performance, democratizing specialized care, and focusing the physician’s time on subtasks that best leverage their expertise. However, enabling medical robots to act autonomously in a procedural environment is extremely challenging. The deforming and unstructured nature of the environment, the lack of features in the anatomy, and sensor size constraints coupled with the millimeter level accuracy required for safe medical procedures introduce a host of challenges not faced by robots operating in structured environments such as factories or warehouses. Robot motion planning and localization are two fundamental abilities for enabling robot autonomy. Motion planning methods compute a sequence of safe and feasible motions for a robot to accomplish a specified task, where safe and feasible are defined by constraints with respect to the robot and its environment. Localization methods estimate the position and orientation of a robot in its environment. Developing such methods for medical robots that overcome the unique challenges in procedural environments is critical for enabling medical robot autonomy. In this dissertation, I developed and evaluated motion planning and localization algorithms towards robot autonomy in medical procedures. A majority of my work was done in the context of an autonomous medical robot built for enhanced lung nodule biopsy. First, I developed a dataset of medical environments spanning various organs and procedures to foster future research into medical robots and automation. I used this data in my own work described throughout this dissertation. Next, I used motion planning to characterize the capabilities of the lung nodule biopsy robot compared to existing clinical tools and I highlighted trade-offs in robot design considerations. Then, I conducted a study to experimentally demonstrate the benefits of the autonomous lung robot in accessing otherwise hard-to-reach lung nodules. I showed that the robot enables access to lung regions beyond the reach of existing clinical tools with millimeter-level accuracy sufficient for accessing the smallest clinically operable nodules. Next, I developed a localization method to estimate the bronchoscope’s position and orientation in the airways with respect to a preoperatively planned needle insertion pose. The method can be used by robotic bronchoscopy systems and by traditional manually navigated bronchoscopes. The method is designed to overcome challenges with tissue motion and visual homogeneity in the airways. I demonstrated the success of this method in simulated lungs undergoing respiratory motion and showed the method’s ability to generalize across patients.Doctor of Philosoph

    Deep Reinforcement Learning for Robotic Tasks: Manipulation and Sensor Odometry

    Get PDF
    Research in robotics has frequently focused on artificial intelligence (AI). To increase the effectiveness of the learning process for the robot, numerous studies have been carried out. To be more effective, robots must be able to learn effectively in a shorter amount of time and with fewer resources. It has been established that reinforcement learning (RL) is efficient for aiding a robot's learning. In this dissertation, we proposed and optimized RL algorithms to ensure that our robots learn well. Research into driverless or self-driving automobiles has exploded in the last few years. A precise estimation of the vehicle's motion is crucial for higher levels of autonomous driving functionality. Recent research has been done on the development of sensors to improve the localization accuracy of these vehicles. Recent sensor odometry research suggests that Lidar Monocular Visual Odometry (LIMO) can be beneficial for determining odometry. However, the LIMO algorithm has a considerable number of errors when compared to ground truth, which motivates us to investigate ways to make it far more accurate. We intend to use a Genetic Algorithm (GA) in our dissertation to improve LIMO's performance. Robotic manipulator research has also been popular and has room for development, which piqued our interest. As a result, we researched robotic manipulators and applied GA to Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER) (GA+DDPG+HER). Finally, we kept researching DDPG and created an algorithm named AACHER. AACHER uses HER and many independent instances of actors and critics from the DDPG to increase a robot's learning effectiveness. AACHER is used to evaluate the results in both custom and existing robot environments.In the first part of our research, we discuss the LIMO algorithm, an odometry estimation technique that employs a camera and a Lidar for visual localization by tracking features from their measurements. LIMO can estimate sensor motion via Bundle Adjustment based on reliable keyframes. LIMO employs weights of the vegetative landmarks and semantic labeling to reject outliers. LIMO, like many other odometry estimating methods, has the issue of having a lot of hyperparameters that need to be manually modified in response to dynamic changes in the environment to reduce translational errors. The GA has been proven to be useful in determining near-optimal values of learning hyperparameters. In our study, we present and propose the application of the GA to maximize the performance of LIMO's localization and motion estimates by optimizing its hyperparameters. We test our approach using the well-known KITTI dataset and demonstrate how the GA supports LIMO to lower translation errors in various datasets. Our second contribution includes the use of RL. Robots using RL can select actions based on a reward function. On the other hand, the choice of values for the learning algorithm's hyperparameters could have a big impact on the entire learning process. We used GA to find the hyperparameters for the Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER). We proposed the algorithm GA+DDPG+HER to optimize learning hyperparameters and applied it to the robotic manipulation tasks of FetchReach, FetchSlide, FetchPush, FetchPick\&Place, and DoorOpening. With only a few modifications, our proposed GA+DDPG+HER was also used in the AuboReach environment. Compared to the original algorithm (DDPG+HER), our experiments show that our approach (GA+DDPG+HER) yields noticeably better results and is substantially faster. In the final part of our dissertation, we were motivated to use and improve DDPG. Many simulated continuous control problems have shown promising results for the DDPG, a unique Deep Reinforcement Learning (DRL) technique. DDPG has two parts: Actor learning and Critic learning. The performance of the DDPG technique is therefore relatively sensitive and unstable because actor and critic learning is a considerable contributor to the robot’s total learning. Our dissertation suggests a multi-actor-critic DDPG for reliable actor-critic learning as an improved DDPG to further enhance the performance and stability of DDPG. This multi-actor-critic DDPG is further combined with HER, called AACHER. The average value of numerous actors/critics is used to replace the single actor/critic in the traditional DDPG approach for improved resistance when one actor/critic performs poorly. Numerous independent actors and critics can also learn from the environment in general. In all the actor/critic number combinations that are evaluated, AACHER performs better than DDPG+HER

    Sampling-Based Exploration Strategies for Mobile Robot Autonomy

    Get PDF
    A novel, sampling-based exploration strategy is introduced for Unmanned Ground Vehicles (UGV) to efficiently map large GPS-deprived underground environments. It is compared to state-of-the-art approaches and performs on a similar level, while it is not designed for a specific robot or sensor configuration like the other approaches. The introduced exploration strategy, which is called Random-Sampling-Based Next-Best View Exploration (RNE), uses a Rapidly-exploring Random Graph (RRG) to find possible view points in an area around the robot. They are compared with a computation-efficient Sparse Ray Polling (SRP) in a voxel grid to find the next-best view for the exploration. Each node in the exploration graph built with RRG is evaluated regarding the ability of the UGV to traverse it, which is derived from an occupancy grid map. It is also used to create a topology-based graph where nodes are placed centrally to reduce the risk of collisions and increase the amount of observable space. Nodes that fall outside the local exploration area are stored in a global graph and are connected with a Traveling Salesman Problem solver to explore them later

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    2023- The Twenty-seventh Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-seventh Annual Symposium of Student Scholars, held on April 18-21, 2023. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1027/thumbnail.jp
    corecore