2,805 research outputs found

    Combining tree-based and dynamical systems for the inference of gene regulatory networks

    Get PDF
    Motivation: Reconstructing the topology of gene regulatory networks (GRNs) from time series of gene expression data remains an important open problem in computational systems biology. Existing GRN inference algorithms face one of two limitations: model-free methods are scalable but suffer from a lack of interpretability and cannot in general be used for out of sample predictions. On the other hand, model-based methods focus on identifying a dynamical model of the system. These are clearly interpretable and can be used for predictions; however, they rely on strong assumptions and are typically very demanding computationally. Results: Here, we propose a new hybrid approach for GRN inference, called Jump3, exploiting time series of expression data. Jump3 is based on a formal on/off model of gene expression but uses a non-parametric procedure based on decision trees (called "jump trees") to reconstruct the GRN topology, allowing the inference of networks of hundreds of genes. We show the good performance of Jump3 on in silico and synthetic networks and applied the approach to identify regulatory interactions activated in the presence of interferon gamma. Availability and implementation: Our MATLAB implementation of Jump3 is available at http:// homepages.inf.ed.ac.uk/vhuynht/software.html

    Reconstructing dynamical networks via feature ranking

    Full text link
    Empirical data on real complex systems are becoming increasingly available. Parallel to this is the need for new methods of reconstructing (inferring) the topology of networks from time-resolved observations of their node-dynamics. The methods based on physical insights often rely on strong assumptions about the properties and dynamics of the scrutinized network. Here, we use the insights from machine learning to design a new method of network reconstruction that essentially makes no such assumptions. Specifically, we interpret the available trajectories (data) as features, and use two independent feature ranking approaches -- Random forest and RReliefF -- to rank the importance of each node for predicting the value of each other node, which yields the reconstructed adjacency matrix. We show that our method is fairly robust to coupling strength, system size, trajectory length and noise. We also find that the reconstruction quality strongly depends on the dynamical regime

    Synergy and redundancy in the Granger causal analysis of dynamical networks

    Get PDF
    We analyze by means of Granger causality the effect of synergy and redundancy in the inference (from time series data) of the information flow between subsystems of a complex network. Whilst we show that fully conditioned Granger causality is not affected by synergy, the pairwise analysis fails to put in evidence synergetic effects. In cases when the number of samples is low, thus making the fully conditioned approach unfeasible, we show that partially conditioned Granger causality is an effective approach if the set of conditioning variables is properly chosen. We consider here two different strategies (based either on informational content for the candidate driver or on selecting the variables with highest pairwise influences) for partially conditioned Granger causality and show that depending on the data structure either one or the other might be valid. On the other hand, we observe that fully conditioned approaches do not work well in presence of redundancy, thus suggesting the strategy of separating the pairwise links in two subsets: those corresponding to indirect connections of the fully conditioned Granger causality (which should thus be excluded) and links that can be ascribed to redundancy effects and, together with the results from the fully connected approach, provide a better description of the causality pattern in presence of redundancy. We finally apply these methods to two different real datasets. First, analyzing electrophysiological data from an epileptic brain, we show that synergetic effects are dominant just before seizure occurrences. Second, our analysis applied to gene expression time series from HeLa culture shows that the underlying regulatory networks are characterized by both redundancy and synergy

    Evolutionary constraints on the complexity of genetic regulatory networks allow predictions of the total number of genetic interactions

    Full text link
    Genetic regulatory networks (GRNs) have been widely studied, yet there is a lack of understanding with regards to the final size and properties of these networks, mainly due to no network currently being complete. In this study, we analyzed the distribution of GRN structural properties across a large set of distinct prokaryotic organisms and found a set of constrained characteristics such as network density and number of regulators. Our results allowed us to estimate the number of interactions that complete networks would have, a valuable insight that could aid in the daunting task of network curation, prediction, and validation. Using state-of-the-art statistical approaches, we also provided new evidence to settle a previously stated controversy that raised the possibility of complete biological networks being random and therefore attributing the observed scale-free properties to an artifact emerging from the sampling process during network discovery. Furthermore, we identified a set of properties that enabled us to assess the consistency of the connectivity distribution for various GRNs against different alternative statistical distributions. Our results favor the hypothesis that highly connected nodes (hubs) are not a consequence of network incompleteness. Finally, an interaction coverage computed for the GRNs as a proxy for completeness revealed that high-throughput based reconstructions of GRNs could yield biased networks with a low average clustering coefficient, showing that classical targeted discovery of interactions is still needed.Comment: 28 pages, 5 figures, 12 pages supplementary informatio

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin
    corecore