11,202 research outputs found

    A methodology for the selection of a paradigm of reasoning under uncertainty in expert system development

    Get PDF
    The aim of this thesis is to develop a methodology for the selection of a paradigm of reasoning under uncertainty for the expert system developer. This is important since practical information on how to select a paradigm of reasoning under uncertainty is not generally available. The thesis explores the role of uncertainty in an expert system and considers the process of reasoning under uncertainty. The possible sources of uncertainty are investigated and prove to be crucial to some aspects of the methodology. A variety of Uncertainty Management Techniques (UMTs) are considered, including numeric, symbolic and hybrid methods. Considerably more information is found in the literature on numeric methods, than the latter two. Methods that have been proposed for comparing UMTs are studied and comparisons reported in the literature are summarised. Again this concentrates on numeric methods, since there is more literature available. The requirements of a methodology for the selection of a UMT are considered. A manual approach to the selection process is developed. The possibility of extending the boundaries of knowledge stored in the expert system by including meta-data to describe the handling of uncertainty in an expert system is then considered. This is followed by suggestions taken from the literature for automating the process of selection. Finally consideration is given to whether the objectives of the research have been met and recommendations are made for the next stage in researching a methodology for the selection of a paradigm of reasoning under uncertainty in expert system development

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    The 2014 International Planning Competition: Progress and Trends

    Get PDF
    We review the 2014 International Planning Competition (IPC-2014), the eighth in a series of competitions starting in 1998. IPC-2014 was held in three separate parts to assess state-of-the-art in three prominent areas of planning research: the deterministic (classical) part (IPCD), the learning part (IPCL), and the probabilistic part (IPPC). Each part evaluated planning systems in ways that pushed the edge of existing planner performance by introducing new challenges, novel tasks, or both. The competition surpassed again the number of competitors than its predecessor, highlighting the competition’s central role in shaping the landscape of ongoing developments in evaluating planning systems

    Deriving Models for Software Project Effort Estimation By Means of Genetic Programming

    Get PDF
    Software engineering, effort estimation, genetic programming, symbolic regression. This paper presents the application of a computational intelligence methodology in effort estimation for software projects. Namely, we apply a genetic programming model for symbolic regression; aiming to produce mathematical expressions that (1) are highly accurate and (2) can be used for estimating the development effort by revealing relationships between the project’s features and the required work. We selected to investigate the effectiveness of this methodology into two software engineering domains. The system was proved able to generate models in the form of handy mathematical expressions that are more accurate than those found in literature.

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin
    • …
    corecore