254 research outputs found

    Combining Spreadsheet Smells for Improved Fault Prediction

    Full text link
    Spreadsheets are commonly used in organizations as a programming tool for business-related calculations and decision making. Since faults in spreadsheets can have severe business impacts, a number of approaches from general software engineering have been applied to spreadsheets in recent years, among them the concept of code smells. Smells can in particular be used for the task of fault prediction. An analysis of existing spreadsheet smells, however, revealed that the predictive power of individual smells can be limited. In this work we therefore propose a machine learning based approach which combines the predictions of individual smells by using an AdaBoost ensemble classifier. Experiments on two public datasets containing real-world spreadsheet faults show significant improvements in terms of fault prediction accuracy.Comment: 4 pages, 1 figure, to be published in 40th International Conference on Software Engineering: New Ideas and Emerging Results Trac

    Software Development Analytics in Practice: A Systematic Literature Review

    Full text link
    Context:Software Development Analytics is a research area concerned with providing insights to improve product deliveries and processes. Many types of studies, data sources and mining methods have been used for that purpose. Objective:This systematic literature review aims at providing an aggregate view of the relevant studies on Software Development Analytics in the past decade (2010-2019), with an emphasis on its application in practical settings. Method:Definition and execution of a search string upon several digital libraries, followed by a quality assessment criteria to identify the most relevant papers. On those, we extracted a set of characteristics (study type, data source, study perspective, development life-cycle activities covered, stakeholders, mining methods, and analytics scope) and classified their impact against a taxonomy. Results:Source code repositories, experimental case studies, and developers are the most common data sources, study types, and stakeholders, respectively. Product and project managers are also often present, but less than expected. Mining methods are evolving rapidly and that is reflected in the long list identified. Descriptive statistics are the most usual method followed by correlation analysis. Being software development an important process in every organization, it was unexpected to find that process mining was present in only one study. Most contributions to the software development life cycle were given in the quality dimension. Time management and costs control were lightly debated. The analysis of security aspects suggests it is an increasing topic of concern for practitioners. Risk management contributions are scarce. Conclusions:There is a wide improvement margin for software development analytics in practice. For instance, mining and analyzing the activities performed by software developers in their actual workbench, the IDE

    An Automatically Created Novel Bug Dataset and its Validation in Bug Prediction

    Get PDF
    Bugs are inescapable during software development due to frequent code changes, tight deadlines, etc.; therefore, it is important to have tools to find these errors. One way of performing bug identification is to analyze the characteristics of buggy source code elements from the past and predict the present ones based on the same characteristics, using e.g. machine learning models. To support model building tasks, code elements and their characteristics are collected in so-called bug datasets which serve as the input for learning. We present the \emph{BugHunter Dataset}: a novel kind of automatically constructed and freely available bug dataset containing code elements (files, classes, methods) with a wide set of code metrics and bug information. Other available bug datasets follow the traditional approach of gathering the characteristics of all source code elements (buggy and non-buggy) at only one or more pre-selected release versions of the code. Our approach, on the other hand, captures the buggy and the fixed states of the same source code elements from the narrowest timeframe we can identify for a bug's presence, regardless of release versions. To show the usefulness of the new dataset, we built and evaluated bug prediction models and achieved F-measure values over 0.74

    A systematic literature review on the code smells datasets and validation mechanisms

    Full text link
    The accuracy reported for code smell-detecting tools varies depending on the dataset used to evaluate the tools. Our survey of 45 existing datasets reveals that the adequacy of a dataset for detecting smells highly depends on relevant properties such as the size, severity level, project types, number of each type of smell, number of smells, and the ratio of smelly to non-smelly samples in the dataset. Most existing datasets support God Class, Long Method, and Feature Envy while six smells in Fowler and Beck's catalog are not supported by any datasets. We conclude that existing datasets suffer from imbalanced samples, lack of supporting severity level, and restriction to Java language.Comment: 34 pages, 10 figures, 12 tables, Accepte

    Use and misuse of the term "Experiment" in mining software repositories research

    Get PDF
    The significant momentum and importance of Mining Software Repositories (MSR) in Software Engineering (SE) has fostered new opportunities and challenges for extensive empirical research. However, MSR researchers seem to struggle to characterize the empirical methods they use into the existing empirical SE body of knowledge. This is especially the case of MSR experiments. To provide evidence on the special characteristics of MSR experiments and their differences with experiments traditionally acknowledged in SE so far, we elicited the hallmarks that differentiate an experiment from other types of empirical studies and characterized the hallmarks and types of experiments in MSR. We analyzed MSR literature obtained from a small-scale systematic mapping study to assess the use of the term experiment in MSR. We found that 19% of the papers claiming to be an experiment are indeed not an experiment at all but also observational studies, so they use the term in a misleading way. From the remaining 81% of the papers, only one of them refers to a genuine controlled experiment while the others stand for experiments with limited control. MSR researchers tend to overlook such limitations, compromising the interpretation of the results of their studies. We provide recommendations and insights to support the improvement of MSR experiments.This work has been partially supported by the Spanish project: MCI PID2020-117191RB-I00.Peer ReviewedPostprint (author's final draft

    Software development process mining: discovery, conformance checking and enhancement

    Get PDF
    Context. Modern software projects require the proper allocation of human, technical and financial resources. Very often, project managers make decisions supported only by their personal experience, intuition or simply by mirroring activities performed by others in similar contexts. Most attempts to avoid such practices use models based on lines of code, cyclomatic complexity or effort estimators, thus commonly supported by software repositories which are known to contain several flaws. Objective. Demonstrate the usefulness of process data and mining methods to enhance the software development practices, by assessing efficiency and unveil unknown process insights, thus contributing to the creation of novel models within the software development analytics realm. Method. We mined the development process fragments of multiple developers in three different scenarios by collecting Integrated Development Environment (IDE) events during their development sessions. Furthermore, we used process and text mining to discovery developers’ workflows and their fingerprints, respectively. Results. We discovered and modeled with good quality developers’ processes during programming sessions based on events extracted from their IDEs. We unveiled insights from coding practices in distinct refactoring tasks, built accurate software complexity forecast models based only on process metrics and setup a method for characterizing coherently developers’ behaviors. The latter may ultimately lead to the creation of a catalog of software development process smells. Conclusions. Our approach is agnostic to programming languages, geographic location or development practices, making it suitable for challenging contexts such as in modern global software development projects using either traditional IDEs or sophisticated low/no code platforms.Contexto. Projetos de software modernos requerem a correta alocação de recursos humanos, técnicos e financeiros. Frequentemente, os gestores de projeto tomam decisões suportadas apenas na sua própria experiência, intuição ou simplesmente espelhando atividades executadas por terceiros em contextos similares. As tentativas para evitar tais práticas baseiam-se em modelos que usam linhas de código, a complexidade ciclomática ou em estimativas de esforço, sendo estes tradicionalmente suportados por repositórios de software conhecidos por conterem várias limitações. Objetivo. Demonstrar a utilidade dos dados de processo e respetivos métodos de análise na melhoria das práticas de desenvolvimento de software, colocando o foco na análise da eficiência e revelando aspetos dos processos até então desconhecidos, contribuindo para a criação de novos modelos no contexto de análises avançadas para o desenvolvimento de software. Método. Explorámos os fragmentos de processo de vários programadores em três cenários diferentes, recolhendo eventos durante as suas sessões de desenvolvimento no IDE. Adicionalmente, usámos métodos de descoberta e análise de processos e texto no sentido de modelar o fluxo de trabalho dos programadores e as suas características individuais, respetivamente. Resultados. Descobrimos e modelámos com boa qualidade os processos dos programadores durante as suas sessões de trabalho, usando eventos provenientes dos seus IDEs. Revelámos factos desconhecidos sobre práticas de refabricação, construímos modelos de previsão da complexidade ciclomática usando apenas métricas de processo e criámos um método para caracterizar coerentemente os comportamentos dos programadores. Este último, pode levar à criação de um catálogo de boas/más práticas no processo de desenvolvimento de software. Conclusões. A nossa abordagem é agnóstica em termos de linguagens de programação, localização geográfica ou prática de desenvolvimento, tornando-a aplicável em contextos complexos tal como em projetos modernos de desenvolvimento global que utilizam tanto os IDEs tradicionais como as atuais e sofisticadas plataformas "low/no code"
    • …
    corecore