25,839 research outputs found

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    What attracts vehicle consumers’ buying:A Saaty scale-based VIKOR (SSC-VIKOR) approach from after-sales textual perspective?

    Get PDF
    Purpose: The increasingly booming e-commerce development has stimulated vehicle consumers to express individual reviews through online forum. The purpose of this paper is to probe into the vehicle consumer consumption behavior and make recommendations for potential consumers from textual comments viewpoint. Design/methodology/approach: A big data analytic-based approach is designed to discover vehicle consumer consumption behavior from online perspective. To reduce subjectivity of expert-based approaches, a parallel Naïve Bayes approach is designed to analyze the sentiment analysis, and the Saaty scale-based (SSC) scoring rule is employed to obtain specific sentimental value of attribute class, contributing to the multi-grade sentiment classification. To achieve the intelligent recommendation for potential vehicle customers, a novel SSC-VIKOR approach is developed to prioritize vehicle brand candidates from a big data analytical viewpoint. Findings: The big data analytics argue that “cost-effectiveness” characteristic is the most important factor that vehicle consumers care, and the data mining results enable automakers to better understand consumer consumption behavior. Research limitations/implications: The case study illustrates the effectiveness of the integrated method, contributing to much more precise operations management on marketing strategy, quality improvement and intelligent recommendation. Originality/value: Researches of consumer consumption behavior are usually based on survey-based methods, and mostly previous studies about comments analysis focus on binary analysis. The hybrid SSC-VIKOR approach is developed to fill the gap from the big data perspective

    LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates

    Get PDF
    State-of-the-art item recommendation algorithms, which apply Factorization Machines (FM) as a scoring function and pairwise ranking loss as a trainer (PRFM for short), have been recently investigated for the implicit feedback based context-aware recommendation problem (IFCAR). However, good recommenders particularly emphasize on the accuracy near the top of the ranked list, and typical pairwise loss functions might not match well with such a requirement. In this paper, we demonstrate, both theoretically and empirically, PRFM models usually lead to non-optimal item recommendation results due to such a mismatch. Inspired by the success of LambdaRank, we introduce Lambda Factorization Machines (LambdaFM), which is particularly intended for optimizing ranking performance for IFCAR. We also point out that the original lambda function suffers from the issue of expensive computational complexity in such settings due to a large amount of unobserved feedback. Hence, instead of directly adopting the original lambda strategy, we create three effective lambda surrogates by conducting a theoretical analysis for lambda from the top-N optimization perspective. Further, we prove that the proposed lambda surrogates are generic and applicable to a large set of pairwise ranking loss functions. Experimental results demonstrate LambdaFM significantly outperforms state-of-the-art algorithms on three real-world datasets in terms of four standard ranking measures

    Personalized content retrieval in context using ontological knowledge

    Get PDF
    Personalized content retrieval aims at improving the retrieval process by taking into account the particular interests of individual users. However, not all user preferences are relevant in all situations. It is well known that human preferences are complex, multiple, heterogeneous, changing, even contradictory, and should be understood in context with the user goals and tasks at hand. In this paper, we propose a method to build a dynamic representation of the semantic context of ongoing retrieval tasks, which is used to activate different subsets of user interests at runtime, in a way that out-of-context preferences are discarded. Our approach is based on an ontology-driven representation of the domain of discourse, providing enriched descriptions of the semantics involved in retrieval actions and preferences, and enabling the definition of effective means to relate preferences and context
    corecore