110 research outputs found

    Population-based incremental learning with associative memory for dynamic environments

    Get PDF
    Copyright © 2007 IEEE. Reprinted from IEEE Transactions on Evolutionary Computation. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In recent years there has been a growing interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) due to its importance in real world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of EAs, for DOPss. A PBIL-specific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multi-population, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multi-population schemes for PBILs in different dynamic environments

    A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades:Part B

    Get PDF
    Many real-world optimization problems are dynamic. The field of dynamic optimization deals with such problems where the search space changes over time. In this two-part paper, we present a comprehensive survey of the research in evolutionary dynamic optimization for single-objective unconstrained continuous problems over the last two decades. In Part A of this survey, we propose a new taxonomy for the components of dynamic optimization algorithms, namely, convergence detection, change detection, explicit archiving, diversity control, and population division and management. In comparison to the existing taxonomies, the proposed taxonomy covers some additional important components, such as convergence detection and computational resource allocation. Moreover, we significantly expand and improve the classifications of diversity control and multi-population methods, which are under-represented in the existing taxonomies. We then provide detailed technical descriptions and analysis of different components according to the suggested taxonomy. Part B of this survey provides an indepth analysis of the most commonly used benchmark problems, performance analysis methods, static optimization algorithms used as the optimization components in the dynamic optimization algorithms, and dynamic real-world applications. Finally, several opportunities for future work are pointed out

    Evolutionary algorithms in dynamic environments

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Evolutionary algorithms (EAs) are widely and often used for solving stationary optimization problems where the fitness landscape or objective function does not change during the course of computation. However, the environments of real world optimization problems may fluctuate or change sharply. If the optimization problem is dynamic, the goal is no longer to find the extrema, but to track their progression through the search space as closely as possible. All kinds of approaches that have been proposed to make EAs suitable for the dynamic environments are surveyed, such as increasing diversity, maintaining diversity, memory based approaches, multi-population approaches and so on

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    Evolutionary Dynamic Optimization Laboratory: A MATLAB Optimization Platform for Education and Experimentation in Dynamic Environments

    Full text link
    Many real-world optimization problems possess dynamic characteristics. Evolutionary dynamic optimization algorithms (EDOAs) aim to tackle the challenges associated with dynamic optimization problems. Looking at the existing works, the results reported for a given EDOA can sometimes be considerably different. This issue occurs because the source codes of many EDOAs, which are usually very complex algorithms, have not been made publicly available. Indeed, the complexity of components and mechanisms used in many EDOAs makes their re-implementation error-prone. In this paper, to assist researchers in performing experiments and comparing their algorithms against several EDOAs, we develop an open-source MATLAB platform for EDOAs, called Evolutionary Dynamic Optimization LABoratory (EDOLAB). This platform also contains an education module that can be used for educational purposes. In the education module, the user can observe a) a 2-dimensional problem space and how its morphology changes after each environmental change, b) the behaviors of individuals over time, and c) how the EDOA reacts to environmental changes and tries to track the moving optimum. In addition to being useful for research and education purposes, EDOLAB can also be used by practitioners to solve their real-world problems. The current version of EDOLAB includes 25 EDOAs and three fully-parametric benchmark generators. The MATLAB source code for EDOLAB is publicly available and can be accessed from [https://github.com/EDOLAB-platform/EDOLAB-MATLAB].Comment: This work was submitted to ACM Transactions on Mathematical Software on December 7, 202

    Adaptive distributed differential evolution

    Get PDF
    Due to the increasing complexity of optimization problems, distributed differential evolution (DDE) has become a promising approach for global optimization. However, similar to the centralized algorithms, DDE also faces the difficulty of strategies' selection and parameters' setting. To deal with such problems effectively, this article proposes an adaptive DDE (ADDE) to relieve the sensitivity of strategies and parameters. In ADDE, three populations called exploration population, exploitation population, and balance population are co-evolved concurrently by using the master-slave multipopulation distributed framework. Different populations will adaptively choose their suitable mutation strategies based on the evolutionary state estimation to make full use of the feedback information from both individuals and the whole corresponding population. Besides, the historical successful experience and best solution improvement are collected and used to adaptively update the individual parameters (amplification factor F and crossover rate CR) and population parameter (population size N), respectively. The performance of ADDE is evaluated on all 30 widely used benchmark functions from the CEC 2014 test suite and all 22 widely used real-world application problems from the CEC 2011 test suite. The experimental results show that ADDE has great superiority compared with the other state-of-the-art DDE and adaptive differential evolution variants

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2010 IEEEIn the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.This work was supported by the Engineering and Physical Sciences Research Council of U.K., under Grant EP/E060722/1

    A survey of evolutionary continuous dynamic optimization over two decades – part A

    Get PDF
    Many real-world optimization problems are dynamic. The field of dynamic optimization deals with such problems where the search space changes over time. In this two-part paper, we present a comprehensive survey of the research in evolutionary dynamic optimization for single-objective unconstrained continuous problems over the last two decades. In Part A of this survey, we propose a new taxonomy for the components of dynamic optimization algorithms, namely, convergence detection, change detection, explicit archiving, diversity control, and population division and management. In comparison to the existing taxonomies, the proposed taxonomy covers some additional important components, such as convergence detection and computational resource allocation. Moreover, we significantly expand and improve the classifications of diversity control and multi-population methods, which are under-represented in the existing taxonomies. We then provide detailed technical descriptions and analysis of different components according to the suggested taxonomy. Part B of this survey provides an indepth analysis of the most commonly used benchmark problems, performance analysis methods, static optimization algorithms used as the optimization components in the dynamic optimization algorithms, and dynamic real-world applications. Finally, several opportunities for future work are pointed out

    Parallelism and evolutionary algorithms

    Full text link
    corecore