481 research outputs found

    ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๋‹ค์ค‘์Šค์ผ€์ผ/๋‹ค๋ชฉ์  ๊ณต๊ฐ„๊ณ„ํš ์ตœ์ ํ™”๋ชจ๋ธ ๊ตฌ์ถ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™์ „๊ณต, 2019. 2. ์ด๋™๊ทผ.๊ณต๊ฐ„๊ณ„ํš ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์ดํ•ด๊ด€๊ณ„์ž์™€ ๊ฒฐ๋ถ€๋œ ๋ชฉํ‘œ์™€ ์ œ์•ฝ ์š”๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์€ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์  ๋ฌธ์ œ๋กœ์„œ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (genetic algorithms), ๋‹ด๊ธˆ์งˆ ๊ธฐ๋ฒ• (simulated annealing), ๊ฐœ๋ฏธ ๊ตฐ์ง‘ ์ตœ์ ํ™” (ant colony optimization) ๋“ฑ์˜ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‘์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ด€๋ จ ์—ฐ๊ตฌ ์—ญ์‹œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋‹ค. ์ด ์ค‘ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ถ€๋ฌธ์— ๊ฐ€์žฅ ๋นˆ๋„ ๋†’๊ฒŒ ์ ์šฉ๋œ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ exploration๊ณผ exploitation์˜ ๊ท ํ˜•์œผ๋กœ ํ•ฉ๋ฆฌ์ ์ธ ์‹œ๊ฐ„ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ์ข‹์€ ๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ์—ฐ๊ตฌ๊ฐ€ ๋ณด์—ฌ์ค€ ์ข‹์€ ์„ฑ๊ณผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ํŠน์ • ์šฉ๋„ ํ˜น์€ ์‹œ์„ค์˜ ๋ฐฐ์น˜์— ์ง‘์ค‘๋˜์–ด ์žˆ์œผ๋ฉฐ, ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ณ„ํš๊ณผ ๊ฐ™์€ ์ตœ๊ทผ์˜ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃฌ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (non-dominated sorting genetic algorithm II)์— ๊ธฐ์ดˆํ•˜์—ฌ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๋„์‹œ์˜ ๋…น์ง€ ๊ณ„ํš ๋“ฑ๊ณผ ๊ฐ™์€ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๊ณต๊ฐ„๊ณ„ํš์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ จ์˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฐœ๋ณ„ ํ™˜๊ฒฝ ์ด์Šˆ์— ๋”ฐ๋ผ ๊ณต๊ฐ„ ํ•ด์ƒ๋„, ๋ชฉ์ , ์ œ์•ฝ์š”๊ฑด์ด ๋‹ค๋ฅด๊ฒŒ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ณต๊ฐ„์  ๋ฒ”์œ„๊ฐ€ ์ข์•„์ง€๊ณ  ๊ณต๊ฐ„ํ•ด์ƒ๋„๋Š” ๋†’์•„์ง€๋Š” ์ˆœ์„œ๋Œ€๋กœ ๋‚˜์—ดํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์ฒซ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๋„ ๊ทœ๋ชจ (province scale, ํ•ด์ƒ๋„ 1ใŽข)์—์„œ ๋ฏธ๋ž˜์˜ ๊ธฐํ›„๋ณ€ํ™”์— ์ ์‘ํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ๋จผ ๋ฏธ๋ž˜๊ฐ€ ์•„๋‹Œ, ํ˜„์žฌ ์ด๋ฏธ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ด€๋ จํ•œ ๋‹ค์ˆ˜์˜ ํ”ผํ•ด๊ฐ€ ๊ด€์ฐฐ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ณต๊ฐ„์  ๊ด€์ ์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์ ์‘์˜ ํ•„์š”์„ฑ์ด ์ง€์ ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ตฌ์ฒด์ ์œผ๋กœ ๊ธฐํ›„์— ๋Œ€ํ•œ ํšŒ๋ณต ํƒ„๋ ฅ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ํ† ์ง€์ด์šฉ์˜ ๊ณต๊ฐ„์  ๊ตฌ์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”์‹œ์ผœ์•ผ ํ• ์ง€์— ๋Œ€ํ•œ ๋ฐฉ๋ฒ•๋ก  ์ œ์‹œ๋Š” ๋ฏธํกํ•˜๋‹ค. ์ง€์—ญ๊ณ„ํš์—์„œ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•œ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„์€ ๋งค์šฐ ์œ ์šฉํ•œ, ๊ธฐ๋ณธ์ ์ธ ์ค‘์žฅ๊ธฐ ์ ์‘ ์ „๋žต์— ํ•ด๋‹นํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค๋ชฉ์  ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (MOGA, multi-objective genetic algorithm)์— ๊ธฐ์ดˆํ•˜์—ฌ 9,982ใŽข์— 350๋งŒ์˜ ์ธ๊ตฌ๊ฐ€ ๊ฑฐ์ฃผํ•˜๋Š” ํ•œ๊ตญ์˜ ์ถฉ์ฒญ๋‚จ๋„ ๋ฐ ๋Œ€์ „๊ด‘์—ญ์‹œ ์ผ๋Œ€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘์„ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ง€์—ญ์ ์ธ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ๊ณผ ๊ฒฝ์ œ์  ์—ฌ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์žฌํ•ด ํ”ผํ•ด ๋ฐ ์ „ํ™˜๋Ÿ‰์˜ ์ตœ์†Œํ™”, ๋ฒผ ์ƒ์‚ฐ๋Ÿ‰, ์ข… ํ’๋ถ€๋„ ๋ณด์ „, ๊ฒฝ์ œ์  ๊ฐ€์น˜์˜ ์ตœ๋Œ€ํ™” ๋“ฑ ๋‹ค์„ฏ ๊ฐ€์ง€์˜ ๋ชฉ์ ์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ ๋ชฉ์  ๋ณ„ ๊ฐ€์ค‘์น˜๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์—ฌ์„ฏ ๊ฐ€์ง€ ๊ฐ€์ค‘์น˜ ์กฐํ•ฉ์— ๋Œ€ํ•œ 17๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ์ •๋„์˜ ์ฐจ์ด๋Š” ์žˆ์œผ๋‚˜ ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ์— ๋น„ํ•ด ๊ธฐํ›„๋ณ€ํ™” ์ ์‘ ๋ถ€๋ถ„์—์„œ ๋” ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์˜€์œผ๋ฏ€๋กœ, ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์ด ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์˜ ์œ ์—ฐํ•œ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ, ์ง€์—ญ์˜ ์‹ค๋ฌด์ž ์—ญ์‹œ ๊ฐ€์ค‘์น˜์™€ ๊ฐ™์€ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ, ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ ํ‰๊ฐ€์™€ ๊ฐ™์€ ์ž…๋ ฅ์ž๋ฃŒ๋ฅผ ๋ณ€๊ฒฝํ•จ์œผ๋กœ์จ ํšจ์œจ์ ์œผ๋กœ ์ƒˆ๋กœ์šด ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑ ๋ฐ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๊ตฐ ๊ทœ๋ชจ (local scale, ํ•ด์ƒ๋„ 100m)์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์žฌํ•ด ํ”ผํ•ด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‚ฐ์•…์ง€ํ˜•์—์„œ ํญ์šฐ๋กœ ์ธํ•œ ์‚ฐ์‚ฌํƒœ๋Š” ์ธ๋ช…๊ณผ ์žฌ์‚ฐ์— ์‹ฌ๊ฐํ•œ ํ”ผํ•ด๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”์šฑ์ด ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ•์šฐ์˜ ๋ณ€๋™์„ฑ ์ฆ๊ฐ€๋กœ ์ด๋Ÿฌํ•œ ์‚ฐ์‚ฌํƒœ ๋นˆ๋„ ๋ฐ ๊ฐ•๋„ ์—ญ์‹œ ์ฆ๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ๊ฐ€ ๋†’์€ ์ง€์—ญ์„ ํ”ผํ•ด ๊ฐœ๋ฐœ์ง€์—ญ์„ ๋ฐฐ์น˜ํ•˜๋Š” ๊ฒƒ์ด ํ”ผํ•ด๋ฅผ ์ €๊ฐ ํ˜น์€ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ „๋žต์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ์‹ค์ œ๊ณต๊ฐ„์—์„œ์˜ ๊ณ„ํš์€ ๋งค์šฐ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์˜ ๋ฌธ์ œ๋กœ์„œ ์ด๊ฒƒ์„ ์‹คํ˜„ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ ๋ฐ ์ „ํ™˜๋Ÿ‰, ํŒŒํŽธํ™”์˜ ์ตœ์†Œํ™” ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ชฉ์ ์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ข…ํ•ฉ์ ์ธ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„ ๊ณ„ํš์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋Œ€์ƒ์ง€๋Š” 2018๋…„ ๋™๊ณ„์˜ฌ๋ฆผํ”ฝ ๊ฐœ์ตœ์ง€์ธ ํ•œ๊ตญ์˜ ํ‰์ฐฝ๊ตฐ์œผ๋กœ์„œ 2006๋…„์— ์‚ฐ์‚ฌํƒœ๋กœ ์ธํ•œ ๋Œ€๊ทœ๋ชจ์˜ ํ”ผํ•ด๋ฅผ ๊ฒฝํ—˜ํ•˜์˜€์œผ๋‚˜, ์˜ฌ๋ฆผํ”ฝ ํŠน์ˆ˜ ๋“ฑ์˜ ๊ฐœ๋ฐœ์••๋ ฅ์œผ๋กœ ์ธํ•œ ๋‚œ๊ฐœ๋ฐœ์ด ์šฐ๋ ค๋˜๋Š” ์ง€์—ญ์ด๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ํ•œ๋ฒˆ์˜ ๋ชจ์˜๋ฅผ ํ†ตํ•ด ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ ๋ณด๋‹ค ์ ์–ด๋„ ํ•œ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ชฉ์ ์—์„œ ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์ด๋Š” 100๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ 5๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ๊ณ„ํš์•ˆ์„ ์„ ์ •ํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ๋ฆฌ์Šคํฌ ์ตœ์†Œํ™”์™€ ์ „ํ™˜๋Ÿ‰ ์ตœ์†Œํ™” ๊ฐ„์— ๋ฐœ์ƒํ•˜๋Š” ์ƒ์‡„ ํšจ๊ณผ๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๊ธฐํ›„๋ณ€ํ™”์™€ ๊ด€๋ จ๋œ ๊ณต๊ฐ„ ์ ์‘ ์ „๋žต์˜ ์ˆ˜๋ฆฝ, ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ๊ฐœ๋ฐœ๊ณ„ํš์„ ์œ„ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ํšจ๊ณผ์ ์œผ๋กœ ์ง€์›ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์„ธ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ๋ธ”๋ก ๊ทœ๋ชจ(neighborhood scale, 2m)์—์„œ ๋„์‹œ ๋‚ด ๋…น์ง€๊ณ„ํš์•ˆ์„ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ๋ฏผ์˜ ์‚ถ์˜ ์งˆ์— ๊ฒฐ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ๋„์‹œ ์žฌ์ƒ ๋ฐ ๊ฐœ๋ฐœ๊ณ„ํš์—๋Š” ๋…น์ง€์™€ ์ง ๊ฐ„์ ‘์ ์œผ๋กœ ๊ด€๋ จ๋œ ์ „๋žต์ด ํฌํ•จ๋œ๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ์ง€์—ญ ๋‚ด์—์„œ ์—ด์„ฌ ํ˜„์ƒ ์™„ํ™”, ์œ ์ถœ๋Ÿ‰ ์ €๊ฐ, ์ƒํƒœ ๋„คํŠธ์›Œํฌ ์ฆ์ง„ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธ์ •์  ํšจ๊ณผ๊ฐ€ ์žˆ์Œ์ด ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ๊ณต๊ฐ„ ๊ณ„ํš์˜ ๊ด€์ ์—์„œ ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ํšจ๊ณผ๋ฅผ ์ข…ํ•ฉ์ , ์ •๋Ÿ‰์ ์œผ๋กœ ๊ณ ๋ ค๋œ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ๋…น์ง€์˜ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„, ์—ด์„ฌ ํšจ๊ณผ ์™„ํ™”์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ํšจ๊ณผ์™€ ์„ค์น˜์— ๋”ฐ๋ฅด๋Š” ๋น„์šฉ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์ ์ ˆํ•œ ๋…น์ง€์˜ ์œ ํ˜•๊ณผ ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•œ ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ธ”๋ก ๊ทœ๋ชจ์˜ ๊ฐ€์ƒ์˜ ๋Œ€์ƒ์ง€์— ๋ณธ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ ์šฉํ•จ์œผ๋กœ์จ 30๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ชฉ์  ๊ฐ„ ํผํฌ๋จผ์Šค๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋…น์ง€์˜ ์—ด์„ฌ ์™„ํ™” ํšจ๊ณผ์™€ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„ ํšจ๊ณผ ๊ฐ„์˜ ์ƒ์Šน ๊ด€๊ณ„ (synergistic relationship), ์ด๋Ÿฌํ•œ ๊ธ์ •์  ํšจ๊ณผ์™€ ๋น„์šฉ ์ ˆ๊ฐ ๊ฐ„์˜ ์ƒ์‡„ ํšจ๊ณผ (trade-off relationship)๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ๊ณ„ํš์•ˆ ์ค‘ ๋Œ€ํ‘œ์ ์ธ ํŠน์„ฑ์„ ์ง€๋‹ˆ๋Š” ๊ณ„ํš์•ˆ, ๋‹ค์ˆ˜์˜ ๊ณ„ํš์•ˆ์—์„œ ๊ณตํ†ต์ ์œผ๋กœ ๋…น์ง€ ์„ค์น˜๋ฅผ ์œ„ํ•ด ์„ ํƒ๋œ ์ฃผ์š” ํ›„๋ณด์ง€์—ญ ์—ญ์‹œ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ๋ชจ๋ธ์€ ๊ณ„ํš์•ˆ์˜ ์ˆ˜์ •์—์„œ๋ถ€ํ„ฐ ์ •๋Ÿ‰์  ํ‰๊ฐ€, ๊ณ„ํš์•ˆ ์„ ํƒ์— ์ด๋ฅด๋Š” ์ผ๋ จ์˜ ๊ธ์ •์ ์ธ ํ”ผ๋“œ๋ฐฑ ๊ณผ์ •์„ ์ˆ˜์—†์ด ๋ฐ˜๋ณตํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋…น์ง€๊ณ„ํš ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ ๋‹ค์ž๊ฐ„ ํ˜‘๋ ฅ์  ๋””์ž์ธ (co-design)์„ ์œ„ํ•œ ์ดˆ์•ˆ์œผ๋กœ์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค.The meeting of heterogeneous goals while staying within the constraints of spatial planning is a nonlinear problem that cannot be solved by linear methodologies. Instead, this problem can be solved using multi-objective optimization algorithms such as genetic algorithms (GA), simulated annealing (SA), ant colony optimization (ACO), etc., and research related to this field has been increasing rapidly. GA, in particular, are the most frequently applied spatial optimization algorithms and are known to search for a good solution within a reasonable time period by maintaining a balance between exploration and exploitation. However, despite its good performance and applicability, it has not adequately addressed recent urgent issues such as climate change adaptation, disaster management, and green infrastructure planning. It is criticized for concentrating on only the allocation of specific land use such as urban and protected areas, or on the site selection of a specific facility. Therefore, in this study, a series of spatial optimizations are proposed to address recent urgent issues such as climate change, disaster management, and urban greening by supplementing quantitative assessment methodologies to the spatial planning process based on GA and Non-dominated Sorting Genetic Algorithm II (NSGA II). This optimization model needs to be understood as a tool for providing a draft plan that quantitatively meets the essential requirements so that the stakeholders can collaborate smoothly in the planning process. Three types of spatial planning optimization models are classified according to urgent issues. Spatial resolution, planning objectives, and constraints were also configured differently according to relevant issues. Each spatial planning optimization model was arranged in the order of increasing spatial resolution. In the first chapter, the optimization model was proposed to simulate land use scenarios to adapt to climate change on a provincial scale. As climate change is an ongoing phenomenon, many recent studies have focused on adaptation to climate change from a spatial perspective. However, little is known about how changing the spatial composition of land use could improve resilience to climate change. Consideration of climate change impacts when spatially allocating land use could be a useful and fundamental long-term adaptation strategy, particularly for regional planning. Here climate adaptation scenarios were identified on the basis of existing extents of three land use classes using Multi-objective Genetic Algorithms (MOGA) for a 9,982 km2 region with 3.5 million inhabitants in South Korea. Five objectives were selected for adaptation based on predicted climate change impacts and regional economic conditions: minimization of disaster damageand existing land use conversionmaximization of rice yieldprotection of high-species-richness areasand economic value. The 17 Pareto land use scenarios were generated by six weighted combinations of the adaptation objectives. Most scenarios, although varying in magnitude, showed better performance than the current spatial land use composition for all adaptation objectives, suggesting that some alteration of current land use patterns could increase overall climate resilience. Given the flexible structure of the optimization model, it is expected that regional stakeholders would efficiently generate other scenarios by adjusting the model parameters (weighting combinations) or replacing the input data (impact maps) and selecting a scenario depending on their preference or a number of problem-related factors. In the second chapter, the optimization model was proposed to simulate land use scenarios for managing disaster damage due to climate change on local scale. Extreme landslides triggered by rainfall in hilly regions frequently lead to serious damage, including casualties and property loss. The frequency of landslides may increase under climate change, because of the increased variability of precipitation. Developing urban areas outside landslide risk zones is the most effective method of reducing or preventing damageplanning in real life is, however, a complex and nonlinear problem. For such multi-objective problems, GA may be the most appropriate optimization tool. Therefore, comprehensive land use allocation plans were suggested using the NSGA II to overcome multi-objective problems, including the minimization of landslide risk, minimization of change, and maximization of compactness. The study area is Pyeongchang-gun, the host city of the 2018 Winter Olympics in Korea, where high development pressure has resulted in an urban sprawl into the hazard zone that experienced a large-scale landslide in 2006. We obtained 100 Pareto plans that are better than the actual land use data for at least one objective, with five plans that explain the trade-offs between meeting the first and the second objectives mentioned above. The results can be used by decision makers for better urban planning and for climate change-related spatial adaptation. In the third chapter, the optimization model was proposed to simulate urban greening plans on a neighborhood scale. Green space is fundamental to the good quality of life of residents, and therefore urban planning or improvement projects often include strategies directly or indirectly related to greening. Although green spaces generate positive effects such as cooling and reduction of rainwater runoff, and are an ecological corridor, few studies have examined the comprehensive multiple effects of greening in the urban planning context. To fill this gap in this fields literature, this study seeks to identify a planning model that determines the location and type of green cover based on its multiple effects (e.g., cooling and enhancement of ecological connectivity) and the implementation cost using NSGA II. The 30 Pareto-optimal plans were obtained by applying our model to a hypothetical landscape on a neighborhood scale. The results showed a synergistic relationship between cooling and enhancement of connectivity, as well as a trade-off relationship between greenery effects and implementation cost. It also defined critical lots for urban greening that are commonly selected in various plans. This model is expected to contribute to the improvement of existing planning processes by repeating the positive feedback loop: from plan modification to quantitative evaluation and selection of better plans. These optimal plans can also be considered as options for co-design by related stakeholders.1. INTRODUCTION 2. CHAPTER 1: Modelling Spatial Climate Change Land use Adaptation with Multi-Objective Genetic Algorithms to Improve Resilience for Rice Yield and Species Richness and to Mitigate Disaster Risk 2.1. Introduction 2.2. Study area 2.3. Methods 2.4. Results 2.5. Discussion 2.6. References 2.7. Supplemental material 3. CHAPTER 2: Multi-Objective Land-Use Allocation Considering Landslide Risk under Climate Change: Case Study in Pyeongchang-gun, Korea 3.1. Introduction 3.2. Material and Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 4. CHAPTER 3: Multi-Objective Planning Model for Urban Greening based on Optimization Algorithms 3.1. Introduction 3.2. Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 3.7. Appendix 5. CONCLUSION REFERENCESDocto

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    Evolutionary approaches to optimisation in rough machining

    Get PDF
    This thesis concerns the use of Evolutionary Computation to optimise the sequence and selection of tools and machining parameters in rough milling applications. These processes are not automated in current Computer-Aided Manufacturing (CAM) software and this work, undertaken in collaboration with an industrial partner, aims to address this. Related research has mainly approached tool sequence optimisation using only a single tool type, and machining parameter optimisation of a single-tool sequence. In a real world industrial setting, tools with different geometrical profiles are commonly used in combination on rough machining tasks in order to produce components with complex sculptured surfaces. This work introduces a new representation scheme and search operators to support the use of the three most commonly used tool types: end mill, ball nose and toroidal. Using these operators, single-objective metaheuristic algorithms are shown to find near-optimal solutions, while surveying only a small number of tool sequences. For the first time, a multi-objective approach is taken to tool sequence optimisation. The process of โ€˜multi objectivisationโ€™ is shown to offer two benefits: escaping local optima on deceptive multimodal search spaces and providing a selection of tool sequence alternatives to a machinist. The multi-objective approach is also used to produce a varied set of near-Pareto optimal solutions, offering different trade-offs between total machining time and total tooling costs, simultaneously optimising tool sequences and the cutting speeds of individual tools. A challenge for using computationally expensive CAM software, important for real world machining, is the time cost of evaluations. An asynchronous parallel evolutionary optimisation system is presented that can provide a significant speed up, even in the presence of heterogeneous evaluation times produced by variable length tool sequences. This system uses a distributed network of processors that could be easily and inexpensively implemented on existing commercial hardware, and accessible to even small workshops

    Parallel optimization algorithms for high performance computing : application to thermal systems

    Get PDF
    The need of optimization is present in every field of engineering. Moreover, applications requiring a multidisciplinary approach in order to make a step forward are increasing. This leads to the need of solving complex optimization problems that exceed the capacity of human brain or intuition. A standard way of proceeding is to use evolutionary algorithms, among which genetic algorithms hold a prominent place. These are characterized by their robustness and versatility, as well as their high computational cost and low convergence speed. Many optimization packages are available under free software licenses and are representative of the current state of the art in optimization technology. However, the ability of optimization algorithms to adapt to massively parallel computers reaching satisfactory efficiency levels is still an open issue. Even packages suited for multilevel parallelism encounter difficulties when dealing with objective functions involving long and variable simulation times. This variability is common in Computational Fluid Dynamics and Heat Transfer (CFD & HT), nonlinear mechanics, etc. and is nowadays a dominant concern for large scale applications. Current research in improving the performance of evolutionary algorithms is mainly focused on developing new search algorithms. Nevertheless, there is a vast knowledge of sequential well-performing algorithmic suitable for being implemented in parallel computers. The gap to be covered is efficient parallelization. Moreover, advances in the research of both new search algorithms and efficient parallelization are additive, so that the enhancement of current state of the art optimization software can be accelerated if both fronts are tackled simultaneously. The motivation of this Doctoral Thesis is to make a step forward towards the successful integration of Optimization and High Performance Computing capabilities, which has the potential to boost technological development by providing better designs, shortening product development times and minimizing the required resources. After conducting a thorough state of the art study of the mathematical optimization techniques available to date, a generic mathematical optimization tool has been developed putting a special focus on the application of the library to the field of Computational Fluid Dynamics and Heat Transfer (CFD & HT). Then the main shortcomings of the standard parallelization strategies available for genetic algorithms and similar population-based optimization methods have been analyzed. Computational load imbalance has been identified to be the key point causing the degradation of the optimization algorithmยฟs scalability (i.e. parallel efficiency) in case the average makespan of the batch of individuals is greater than the average time required by the optimizer for performing inter-processor communications. It occurs because processors are often unable to finish the evaluation of their queue of individuals simultaneously and need to be synchronized before the next batch of individuals is created. Consequently, the computational load imbalance is translated into idle time in some processors. Several load balancing algorithms have been proposed and exhaustively tested, being extendable to any other population-based optimization method that needs to synchronize all processors after the evaluation of each batch of individuals. Finally, a real-world engineering application that consists on optimizing the refrigeration system of a power electronic device has been presented as an illustrative example in which the use of the proposed load balancing algorithms is able to reduce the simulation time required by the optimization tool.El aumento de las aplicaciones que requieren de una aproximaciรณn multidisciplinar para poder avanzar se constata en todos los campos de la ingenierรญa, lo cual conlleva la necesidad de resolver problemas de optimizaciรณn complejos que exceden la capacidad del cerebro humano o de la intuiciรณn. En estos casos es habitual el uso de algoritmos evolutivos, principalmente de los algoritmos genรฉticos, caracterizados por su robustez y versatilidad, asรญ como por su gran coste computacional y baja velocidad de convergencia. La multitud de paquetes de optimizaciรณn disponibles con licencias de software libre representan el estado del arte actual en tecnologรญa de optimizaciรณn. Sin embargo, la capacidad de adaptaciรณn de los algoritmos de optimizaciรณn a ordenadores masivamente paralelos alcanzando niveles de eficiencia satisfactorios es todavรญa una tarea pendiente. Incluso los paquetes adaptados al paralelismo multinivel tienen dificultades para gestionar funciones objetivo que requieren de tiempos de simulaciรณn largos y variables. Esta variabilidad es comรบn en la Dinรกmica de Fluidos Computacional y la Transferencia de Calor (CFD & HT), mecรกnica no lineal, etc. y es una de las principales preocupaciones en aplicaciones a gran escala a dรญa de hoy. La investigaciรณn actual que tiene por objetivo la mejora del rendimiento de los algoritmos evolutivos estรก enfocada principalmente al desarrollo de nuevos algoritmos de bรบsqueda. Sin embargo, ya se conoce una gran variedad de algoritmos secuenciales apropiados para su implementaciรณn en ordenadores paralelos. La tarea pendiente es conseguir una paralelizaciรณn eficiente. Ademรกs, los avances en la investigaciรณn de nuevos algoritmos de bรบsqueda y la paralelizaciรณn son aditivos, por lo que el proceso de mejora del software de optimizaciรณn actual se verรก incrementada si se atacan ambos frentes simultรกneamente. La motivaciรณn de esta Tesis Doctoral es avanzar hacia una integraciรณn completa de las capacidades de Optimizaciรณn y Computaciรณn de Alto Rendimiento para asรญ impulsar el desarrollo tecnolรณgico proporcionando mejores diseรฑos, acortando los tiempos de desarrollo del producto y minimizando los recursos necesarios. Tras un exhaustivo estudio del estado del arte de las tรฉcnicas de optimizaciรณn matemรกtica disponibles a dรญa de hoy, se ha diseรฑado una librerรญa de optimizaciรณn orientada al campo de la Dinรกmica de Fluidos Computacional y la Transferencia de Calor (CFD & HT). A continuaciรณn se han analizado las principales limitaciones de las estrategias de paralelizaciรณn disponibles para algoritmos genรฉticos y otros mรฉtodos de optimizaciรณn basados en poblaciones. En el caso en que el tiempo de evaluaciรณn medio de la tanda de individuos sea mayor que el tiempo medio que necesita el optimizador para llevar a cabo comunicaciones entre procesadores, se ha detectado que la causa principal de la degradaciรณn de la escalabilidad o eficiencia paralela del algoritmo de optimizaciรณn es el desequilibrio de la carga computacional. El motivo es que a menudo los procesadores no terminan de evaluar su cola de individuos simultรกneamente y deben sincronizarse antes de que se cree la siguiente tanda de individuos. Por consiguiente, el desequilibrio de la carga computacional se convierte en tiempo de inactividad en algunos procesadores. Se han propuesto y testado exhaustivamente varios algoritmos de equilibrado de carga aplicables a cualquier mรฉtodo de optimizaciรณn basado en una poblaciรณn que necesite sincronizar los procesadores tras cada tanda de evaluaciones. Finalmente, se ha presentado como ejemplo ilustrativo un caso real de ingenierรญa que consiste en optimizar el sistema de refrigeraciรณn de un dispositivo de electrรณnica de potencia. En รฉl queda demostrado que el uso de los algoritmos de equilibrado de carga computacional propuestos es capaz de reducir el tiempo de simulaciรณn que necesita la herramienta de optimizaciรณn

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa
    • โ€ฆ
    corecore