35 research outputs found

    Cluster Dependent Classifiers for Online Signature Verification

    Get PDF
    In this paper, the applicability of notion of cluster dependent classifier for online signature verification is investigated. For every writer, by the use of a number of training samples, a representative is selected based on minimum average distance criteria (centroid) across all the samples of that writer. Later k-means clustering algorithm is employed to cluster the writers based on the chosen representatives. To select a suitable classifier for a writer, the equal error rate (EER) is estimated using each of the classifier for every writer in a cluster. The classifier which gives the lowest EER for a writer is selected to be the suitable classifier for that writer. Once the classifier for each writer in a cluster is decided, the classifier which has been selected for a maximum number of writers in that cluster is decided to be the classifier for all writers of that cluster. During verification, the authenticity of the query signature is decided using the same classifier which has been selected for the cluster to which the claimed writer belongs. In comparison with the existing works on online signature verification, which use a common classifier for all writers during verification, our work is based on the usage of a classifier which is cluster dependent. On the other hand our intuition is to recommend to use a same classifier for all and only those writers who have some common characteristics and to use different classifiers for writers of different characteristics. To demonstrate the efficacy of our model, extensive experiments are carried out on the MCYT online signature dataset (DB1) consisting signatures of 100 individuals. The outcome of the experiments being indicative of increased performance with the adaption of cluster dependent classifier seems to open up a new avenue for further investigation on a reasonably large dataset

    Interval valued symbolic representation of writer dependent features for online signature verification

    Get PDF
    This work focusses on exploitation of the notion of writer dependent parameters for online signature verification. Writer dependent parameters namely features, decision threshold and feature dimension have been well exploited for effective verification. For each writer, a subset of the original set of features are selected using different filter based feature selection criteria. This is in contrast to writer independent approaches which work on a common set of features for all writers. Once features for each writer are selected, they are represented in the form of an interval valued symbolic feature vector. Number of features and the decision threshold to be used for each writer during verification are decided based on the equal error rate (EER) estimated with only the signatures considered for training the system. To demonstrate the effectiveness of the proposed approach, extensive experiments are conducted on both MCYT (DB1) and MCYT (DB2) benchmarking online signature datasets consisting of signatures of 100 and 330 individuals respectively using the available 100 global parametric features. © 2017 Elsevier Lt

    Performance analysis of multimodal biometric fusion

    Get PDF
    Biometrics is constantly evolving technology which has been widely used in many official and commercial identification applications. In fact in recent years biometric-based authentication techniques received more attention due to increased concerns in security. Most biometric systems that are currently in use typically employ a single biometric trait. Such systems are called unibiometric systems. Despite considerable advances in recent years, there are still challenges in authentication based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-class variability, non-universality, spoof attack and unacceptable error rates. Some of the challenges can be handled by designing a multimodal biometric system. Multimodal biometric systems are those which utilize or are capable of utilizing, more than one physiological or behavioural characteristic for enrolment, verification, or identification. In this thesis, we propose a novel fusion approach at a hybrid level between iris and online signature traits. Online signature and iris authentication techniques have been employed in a range of biometric applications. Besides improving the accuracy, the fusion of both of the biometrics has several advantages such as increasing population coverage, deterring spoofing activities and reducing enrolment failure. In this doctoral dissertation, we make a first attempt to combine online signature and iris biometrics. We principally explore the fusion of iris and online signature biometrics and their potential application as biometric identifiers. To address this issue, investigations is carried out into the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. We compare the results of the multimodal approach with the results of the individual online signature and iris authentication approaches. This dissertation describes research into the feature and decision fusion levels in multimodal biometrics.State of Kuwait – The Public Authority of Applied Education and Trainin

    Gravitational Search For Designing A Fuzzy Rule-Based Classifiers For Handwritten Signature Verification

    Get PDF
    Handwritten signatures are used in authentication systems as a universal biometric identifier. Signature authenticity verification requires building and training a classifier. This paper describes a new approach to the verification of handwritten signatures by dynamic characteristics with a fuzzy rule-based classifier. It is suggested to use the metaheuristic Gravitational Search Algorithm for the selection of the relevant features and tuning fuzzy rule parameters. The efficiency of the approach was tested with an original dataset; the type II errors in finding the signature authenticity did not exceed 0.5% for the worst model and 0.08% for the best model

    Continuous User Authentication Using Multi-Modal Biometrics

    Get PDF
    It is commonly acknowledged that mobile devices now form an integral part of an individual’s everyday life. The modern mobile handheld devices are capable to provide a wide range of services and applications over multiple networks. With the increasing capability and accessibility, they introduce additional demands in term of security. This thesis explores the need for authentication on mobile devices and proposes a novel mechanism to improve the current techniques. The research begins with an intensive review of mobile technologies and the current security challenges that mobile devices experience to illustrate the imperative of authentication on mobile devices. The research then highlights the existing authentication mechanism and a wide range of weakness. To this end, biometric approaches are identified as an appropriate solution an opportunity for security to be maintained beyond point-of-entry. Indeed, by utilising behaviour biometric techniques, the authentication mechanism can be performed in a continuous and transparent fashion. This research investigated three behavioural biometric techniques based on SMS texting activities and messages, looking to apply these techniques as a multi-modal biometric authentication method for mobile devices. The results showed that linguistic profiling; keystroke dynamics and behaviour profiling can be used to discriminate users with overall Equal Error Rates (EER) 12.8%, 20.8% and 9.2% respectively. By using a combination of biometrics, the results showed clearly that the classification performance is better than using single biometric technique achieving EER 3.3%. Based on these findings, a novel architecture of multi-modal biometric authentication on mobile devices is proposed. The framework is able to provide a robust, continuous and transparent authentication in standalone and server-client modes regardless of mobile hardware configuration. The framework is able to continuously maintain the security status of the devices. With a high level of security status, users are permitted to access sensitive services and data. On the other hand, with the low level of security, users are required to re-authenticate before accessing sensitive service or data

    Automatic signature verification system

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we explore dynamic signature verification systems. Unlike other signature models, we use genuine signatures in this project as they are more appropriate in real world applications. Signature verification systems are typical examples of biometric devices that use physical and behavioral characteristics to verify that a person really is who he or she claims to be. Other popular biometric examples include fingerprint scanners and hand geometry devices. Hand written signatures have been used for some time to endorse financial transactions and legal contracts although little or no verification of signatures is done. This sets it apart from the other biometrics as it is well accepted method of authentication. Until more recently, only hidden Markov models were used for model construction. Ongoing research on signature verification has revealed that more accurate results can be achieved by combining results of multiple models. We also proposed to use combinations of multiple single variate models instead of single multi variate models which are currently being adapted by many systems. Apart from these, the proposed system is an attractive way for making financial transactions more secure and authenticate electronic documents as it can be easily integrated into existing transaction procedures and electronic communication

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    corecore