873 research outputs found

    Attention-Based Neural Network for Solving the Green Vehicle Routing Problem in Waste Management

    Get PDF
    23.08.23: Trekkes tilbake fra visning som løsning på at oppgaven ble ferdigstilt fra studieadministrasjonen litt for fort/IHTIThe transport sector is a major contributor to the emission of greenhouse gases and air pollution. As urbanization and population growth continue to increase, the demand for transportation services grows, emphasizing the need for sustainable practices. Therefore, incorporating sustainability into the transport sector can effectively reduce its negative impacts on the environment and optimize the utilization of resources. This thesis aims to address this issue by proposing a novel method that integrates neural networks into the development of a green vehicle routing model. By incorporating environmental considerations, particularly fuel consumption, into the optimization process, the model seeks to generate more sustainable route solutions. The integration of machine learning techniques, specifically an attention-based neural network, demonstrates the potential of combining machine learning with operations research for effective route optimization. While the effectiveness of the green vehicle routing problem (GVRP) has been demonstrated in providing sustainable routes, its practical applications in real-world scenarios are still limited. Therefore, this thesis proposes the implementation of the GVRP model in a real-world waste collection routing problem. The study utilizes data obtained from Remiks, a waste management company responsible for waste collection and handling in Tromsø and Karlsøy. The findings of this study highlight the promising synergy between machine learning and operations research for further advancements and real-world applications. Specifically, the application of the GVRP approach to waste management issues has been shown to reduce emissions during the waste collection process compared to routes optimized solely for distance minimization. The attention-based neural network approach successfully generates routes that minimize fuel consumption, outperforming distance-optimized routes. These results underscore the importance of leveraging the GVRP to address environmental challenges while enhancing decision-making efficiency and effectiveness. Overall, this thesis provides insights for developing sustainable and optimized routes for real-world problems

    Efficient Fuel Consumption Minimization for Green Vehicle Routing Problems using a Hybrid Neural Network-Optimization Algorithm

    Get PDF
    Efficient routing optimization yields benefits that extend beyond mere financial gains. In this thesis, we present a methodology that utilizes a graph convolutional neural network to facilitate the development of energy-efficient waste collection routes. Our approach focuses on a Waste company in Tromsø, Remiks, and uses real-life datasets, ensuring practicability and ease of implementation. In particular, we extend the dpdp algorithm introduced by Kool et al. (2021) [1] to minimize fuel consumption and devise routes that account for the impact of elevation and real road distance traveled. Our findings shed light on the potential advantages and enhancements these optimized routes can offer Remiks, including improved effectiveness and cost savings. Additionally, we identify key areas for future research and development

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem.Postprint (published version

    Neural network optimization

    Get PDF

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Exact Models, Heuristics, and Supervised Learning Approaches for Vehicle Routing Problems

    Get PDF
    This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical workforce scheduling problem, formulated as a specific type of vehicle routing problem. The objective here is to efficiently assign consultants to various clients and plan their trips. This computational challenge is addressed by using a two-stage approach: the first stage employs a mathematical model, while the second stage refines the solution with a heuristic algorithm. In the final chapter, we explore methods that integrate machine learning with traditional approaches to address the Traveling Salesman Problem, a foundational routing challenge. Our goal is to utilize supervised learning to predict information that boosts the efficiency of existing algorithms. Taken together, these three chapters offer a comprehensive overview of methodologies for addressing vehicle routing problems
    • …
    corecore