17,142 research outputs found

    Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles

    Get PDF
    We examine a network of learners which address the same classification task but must learn from different data sets. The learners cannot share data but instead share their models. Models are shared only one time so as to preserve the network load. We introduce DELCO (standing for Decentralized Ensemble Learning with COpulas), a new approach allowing to aggregate the predictions of the classifiers trained by each learner. The proposed method aggregates the base classifiers using a probabilistic model relying on Gaussian copulas. Experiments on logistic regressor ensembles demonstrate competing accuracy and increased robustness in case of dependent classifiers. A companion python implementation can be downloaded at https://github.com/john-klein/DELC

    A Multiple Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps

    Get PDF
    A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote-sensing images. Such a system is able to face the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times in the considered area; ii) it is based on a partially unsupervised methodology capable to accomplish the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood classification approach and a non-parametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive sensors, SAR images, multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource data set confirm the effectiveness of the proposed system

    Combining Parametric and Non-parametric Algorithms for a Partially Unsupervised Classification of Multitemporal Remote-Sensing Images

    Get PDF
    In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new image of the considered site. In this context, two techniques are presented for the unsupervised updating of the parameters of a maximum-likelihood (ML) classifier and a radial basis function (RBF) neural-network classifier, on the basis of the distribution of the new image to be classified. Experimental results carried out on a multitemporal and multisource remote-sensing data set confirm the effectiveness of the proposed system

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic
    • …
    corecore