158 research outputs found

    Leveraging Statistical Shape Priors in GAN-based ECG Synthesis

    Full text link
    Due to the difficulty of collecting electrocardiogram (ECG) data during emergency situations, ECG data generation is an efficient solution for dealing with highly imbalanced ECG training datasets. However, due to the complex dynamics of ECG signals, the synthesis of such signals is a challenging task. In this paper, we present a novel approach for ECG signal generation based on Generative Adversarial Networks (GANs). Our approach combines GANs with statistical ECG data modeling to leverage prior knowledge about ECG dynamics in the generation process. To validate the proposed approach, we present experiments using ECG signals from the MIT-BIH arrhythmia database. The obtained results show the benefits of modeling temporal and amplitude variations of ECG signals as 2-D shapes in generating realistic signals and also improving the performance of state-of-the-art arrhythmia classification baselines.Comment: 6 figures, 26 page

    Electrocardiogram Heartbeat Classification Using Convolutional Neural Networks for the Detection of Cardiac Arrhythmia

    Full text link
    The classification of the electrocardiogram (ECG) signal has a vital impact on identifying heart-related diseases. This can ensure the premature finding of heart disease and the proper selection of the patient's customized treatment. However, the detection of arrhythmia is a challenging task to perform manually. This justifies the necessity of a technique for automatic detection of abnormal heart signals. Therefore, our work is based on the classification of five classes of ECG arrhythmic signals from Physionet's MIT-BIH Arrhythmia Dataset. Artificial Neural Networks (ANN) have demonstrated significant success in ECG signal classification. Our proposed model is a Convolutional Neural Network (CNN) customized to categorize the ECG signals. Our result testifies that the planned CNN model can successfully categorize arrhythmia with an overall accuracy of 95.2%. The average precision and recall of the proposed model are 95.2% and 95.4%, respectively. This model can effectively be used to detect irregularities of heart rhythm at an early stage.Comment: 4th International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC 2020), IEEE, 7-9 October 2020, TamilNadu, INDI

    Neuromorphic computing based on stochastic spiking reservoir for heartbeat classification

    Get PDF
    Heart disease is the leading cause of mortality worldwide. The precise heartbeat classification usually requires a higher number of extracted features and heartbeats of the same class may also behave differently in patients. This will lead to computation overhead and challenges in hardware implementation due to the large number of nodes utilized in reservoir computing (RC) networks. In this work, a reservoir computing-based stochastic spiking neural network (SSNN) has been proposed for heartbeat rhythm classification, enabling a patient adaptable and more efficient hardware implementation with low computation overhead caused by minimum extracted features. Only a single feature is employed in template matching to achieve patient adaptability with minimal computation overhead. The single feature, QRS complexes, was extracted and fed into the neural reservoir with 20 neurons in a cyclic topology for arrhythmia similarity calculation and classification. 43 recordings of Electrocardiogram (ECG) signals that included both normal and arrhythmic beats from MIT-BIH arrhythmia database obtained from Physio-Net were used in this work. The proposed stochastic spiking reservoir achieves a sensitivity of 99.6% and an accuracy of 96.91%, signifying that the system is accurate and efficient in classifying normal and abnormal arrhythmias

    Low Power Circuits for Smart Flexible ECG Sensors

    Get PDF
    Cardiovascular diseases (CVDs) are the world leading cause of death. In-home heart condition monitoring effectively reduced the CVD patient hospitalization rate. Flexible electrocardiogram (ECG) sensor provides an affordable, convenient and comfortable in-home monitoring solution. The three critical building blocks of the ECG sensor i.e., analog frontend (AFE), QRS detector, and cardiac arrhythmia classifier (CAC), are studied in this research. A fully differential difference amplifier (FDDA) based AFE that employs DC-coupled input stage increases the input impedance and improves CMRR. A parasitic capacitor reuse technique is proposed to improve the noise/area efficiency and CMRR. An on-body DC bias scheme is introduced to deal with the input DC offset. Implemented in 0.35m CMOS process with an area of 0.405mm2, the proposed AFE consumes 0.9W at 1.8V and shows excellent noise effective factor of 2.55, and CMRR of 76dB. Experiment shows the proposed AFE not only picks up clean ECG signal with electrodes placed as close as 2cm under both resting and walking conditions, but also obtains the distinct -wave after eye blink from EEG recording. A personalized QRS detection algorithm is proposed to achieve an average positive prediction rate of 99.39% and sensitivity rate of 99.21%. The user-specific template avoids the complicate models and parameters used in existing algorithms while covers most situations for practical applications. The detection is based on the comparison of the correlation coefficient of the user-specific template with the ECG segment under detection. The proposed one-target clustering reduced the required loops. A continuous-in-time discrete-in-amplitude (CTDA) artificial neural network (ANN) based CAC is proposed for the smart ECG sensor. The proposed CAC achieves over 98% classification accuracy for 4 types of beats defined by AAMI (Association for the Advancement of Medical Instrumentation). The CTDA scheme significantly reduces the input sample numbers and simplifies the sample representation to one bit. Thus, the number of arithmetic operations and the ANN structure are greatly simplified. The proposed CAC is verified by FPGA and implemented in 0.18m CMOS process. Simulation results show it can operate at clock frequencies from 10KHz to 50MHz. Average power for the patient with 75bpm heart rate is 13.34W

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    A Machine Learning Approach to Reduce Dimensional Space in Large Datasets

    Get PDF
    Large datasets computing is a research problem as well as a huge challenge due to massive amounts of data that are mined and crunched in order to successfully analyze these massive datasets because they constitute a valuable source of information over different and cross-folded domains, and therefore it represents an irreplaceable opportunity. Hence, the increasing number of environments that use data-intensive computations need more complex calculations than the ones applied to grid-based infrastructures. In this way, this paper analyzes the most commonly used algorithms regarding to this complex problem of handling large datasets whose part of research efforts are focused on reducing dimensional space. Consequently, we present a novel machine learning method that reduces dimensional space in large datasets. This approach is carried out by developing different phases: merging all datasets as a huge one, performing the Extract, Transform and Load (ETL) process, applying the Principal Component Analysis (PCA) algorithm to machine learning techniques, and finally displaying the data results by means of dashboards. The major contribution in this paper is the development of a novel architecture divided into five phases that presents an hybrid method of machine learning for reducing dimensional space in large datasets. In order to verify the correctness of our proposal, we have presented a case study with a complex dataset, specifically an epileptic seizure recognition database. The experiments carried out are very promising since they present very encouraging results to be applied to a great number of different domains.This work was partially funded by Grant RTI2018-094283-B-C32, ECLIPSE-UA (Spanish Ministry of Education and Science), and in part by the Lucentia AGI Grant. This work was partially funded by GENDER-NET Plus Joint Call on Gender an UN Sustainable Development Goals (European Commission - Grant Agreement 741874), funded in Spain by “La Caixa” Foundation (ID 100010434) with code LCF/PR/DE18/52010001 to MTH

    Bio-Radar: sistema de aquisição de sinais vitais sem contacto

    Get PDF
    The Bio-Radar system is capable to measure vital signs accurately, namely the respiratory and cardiac signal, using electromagnetic waves. In this way, it is possible to monitor subjects remotely and comfortably for long periods of time. This system is based on the micro-Doppler effect, which relates the received signal phase variation with the distance change between the subject chest-wall and the radar antennas, which occurs due to the cardiopulmonary function. Considering the variety of applications where this system can be used, it is required to evaluate its performance when applied to real context scenarios and thus demonstrate the advantages that bioradar systems can bring to the general population. In this work, a bio-radar prototype was developed in order to verify the viability to be integrated in specific applications, using robust and low profile solutions that equally guarantee the general system performance while addressing the market needs. Considering these two perspectives to be improved, different level solutions were developed. On the hardware side, textile antennas were developed to be embedded in a car seat upholstery, thus reaching a low profile solution and easy to include in the industrialization process. Real context scenarios imply long-term monitoring periods, where involuntary body motion can occur producing high amplitude signals that overshadow the vital signs. Non-controlled monitoring environments might also produce time varying parasitic reflections that have a direct impact in the signal. Additionally, the subject's physical stature and posture during the monitoring period can have a different impact in the signals quality. Therefore, signal processing algorithms were developed to be robust to low quality signals and non-static scenarios. On the other hand, the bio-radar potential can also be maximized if the acquired signals are used pertinently to help identify the subject's psychophysiological state enabling one to act accordingly. The random body motion until now has been seen as a noisy source, however it can also provide useful information regarding subject's state. In this sense, the acquired vital signs as well as other body motions were used in machine learning algorithms with the goal to identify the subject's emotions and thus verify if the remotely acquired vital signs can also provide useful information.O sistema Bio-Radar permite medir sinais vitais com precisão, nomeadamente o sinal respiratório e cardíaco, utilizando ondas eletromagnéticas para esse fim. Desta forma, é possível monitorizar sujeitos de forma remota e confortável durante longos períodos de tempo. Este sistema é baseado no efeito de micro-Doppler, que relaciona a variação de fase do sinal recebido com a alteração da distância entre as antenas do radar e a caixa torácica do sujeito, que ocorre durante a função cardiopulmonar. Considerando a variedade de aplicações onde este sistema pode ser utilizado, é necessário avaliar o seu desempenho quando aplicado em contextos reais e assim demonstrar as vantagens que os sistemas bio-radar podem trazer à população geral. Neste trabalho, foi desenvolvido um protótipo do bio radar com o objetivo de verificar a viabilidade de integrar estes sistemas em aplicações específicas, utilizando soluções robustas e discretas que garantam igualmente o seu bom desempenho, indo simultaneamente de encontro às necessidades do mercado. Considerando estas duas perspetivas em que o sistema pode ser melhorado, foram desenvolvidas soluções de diferentes níveis. Do ponto de vista de hardware, foram desenvolvidas antenas têxteis para serem integradas no estofo de um banco automóvel, alcançando uma solução discreta e fácil de incluir num processo de industrialização. Contextos reais de aplicação implicam períodos de monitorização longos, onde podem ocorrer movimentos corporais involuntários que produzem sinais de elevada amplitude que se sobrepõem aos sinais vitais. Ambientes de monitorização não controlados podem produzir reflexões parasitas variantes no tempo que têm impacto direto no sinal. Adicionalmente, a estrutura física do sujeito e a sua postura durante o período de monitorização podem ter impactos diferentes na qualidade dos sinais. Desta forma, foram desenvolvidos algoritmos de processamento de sinal robustos a sinais de baixa qualidade e a cenários não estáticos. Por outro lado, o potencial do bio radar pode também ser maximizado se os sinais adquiridos forem pertinentemente utilizados de forma a ajudar a identificar o estado psicofisiológico do sujeito, permitindo mais tarde agir em conformidade. O movimento corporal aleatório que foi até agora visto como uma fonte de ruído, pode no entanto também fornecer informação útil sobre o estado do sujeito. Neste sentido, os sinais vitais e outros movimentos corporais adquiridos foram utilizados em algoritmos de aprendizagem automática com o objetivo de identificar as emoções do sujeito e assim verificar que sinais vitais adquiridos remotamente podem também conter informação útil.Programa Doutoral em Engenharia Eletrotécnic

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms
    corecore