58 research outputs found

    Trusted and Privacy-preserving Embedded Systems: Advances in Design, Analysis and Application of Lightweight Privacy-preserving Authentication and Physical Security Primitives

    Get PDF
    Radio Frequency Identification (RFID) enables RFID readers to perform fully automatic wireless identification of objects labeled with RFID tags and is widely deployed to many applications, such as access control, electronic tickets and payment as well as electronic passports. This prevalence of RFID technology introduces various risks, in particular concerning the privacy of its users and holders. Despite the privacy risk, classical threats to authentication and identification systems must be considered to prevent the adversary from impersonating or copying (cloning) a tag. This thesis summarizes the state of the art in secure and privacy-preserving authentication for RFID tags with a particular focus on solutions based on Physically Unclonable Functions (PUFs). It presents advancements in the design, analysis and evaluation of secure and privacy-preserving authentication protocols for RFID systems and PUFs. Formalizing the security and privacy requirements on RFID systems is essential for the design of provably secure and privacy-preserving RFID protocols. However, existing RFID security and privacy models in the literature are often incomparable and in part do not reflect the capabilities of real-world adversaries. We investigate subtle issues such as tag corruption aspects that lead to the impossibility of achieving both mutual authentication and any reasonable notion of privacy in one of the most comprehensive security and privacy models, which is the basis of many subsequent works. Our results led to the refinement of this privacy model and were considered in subsequent works on privacy-preserving RFID systems. A promising approach to enhance the privacy in RFID systems without lifting the computational requirements on the tags are anonymizers. These are special devices that take off the computational workload from the tags. While existing anonymizer-based protocols are subject to impersonation and denial-of-service attacks, existing RFID security and privacy models do not include anonymizers. We present the first security and privacy framework for anonymizer-enabled RFID systems and two privacy-preserving RFID authentication schemes using anonymizers. Both schemes achieve several appealing features that were not simultaneously achieved by any previous proposal. The first protocol is very efficient for all involved entities, achieves privacy under tag corruption. It is secure against impersonation attacks and forgeries even if the adversary can corrupt the anonymizers. The second scheme provides for the first time anonymity and untraceability of tags against readers as well as secure tag authentication against collisions of malicious readers and anonymizers using tags that cannot perform public-key cryptography (i.e., modular exponentiations). The RFID tags commonly used in practice are cost-efficient tokens without expensive hardware protection mechanisms. Physically Unclonable Functions (PUFs) promise to provide an effective security mechanism for RFID tags to protect against basic hardware attacks. However, existing PUF-based RFID authentication schemes are not scalable, allow only for a limited number of authentications and are subject to replay, denial-of-service and emulation attacks. We present two scalable PUF-based authentication schemes that overcome these problems. The first protocol supports tag and reader authentication, is resistant to emulation attacks and highly scalable. The second protocol uses a PUF-based key storage and addresses an open question on the feasibility of destructive privacy, i.e., the privacy of tags that are destroyed during tag corruption. The security of PUFs relies on assumptions on physical properties and is still under investigation. PUF evaluation results in the literature are difficult to compare due to varying test conditions and different analysis methods. We present the first large-scale security analysis of ASIC implementations of the five most popular electronic PUF types, including Arbiter, Ring Oscillator, SRAM, Flip-Flop and Latch PUFs. We present a new PUF evaluation methodology that allows a more precise assessment of the unpredictability properties than previous approaches and we quantify the most important properties of PUFs for their use in cryptographic schemes. PUFs have been proposed for various applications, including anti-counterfeiting and authentication schemes. However, only rudimentary PUF security models exist, limiting the confidence in the security claims of PUF-based security mechanisms. We present a formal security framework for PUF-based primitives, which has been used in subsequent works to capture the properties of image-based PUFs and in the design of anti-counterfeiting mechanisms and physical hash functions

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore