372 research outputs found

    A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences.</p> <p>Results</p> <p>In this paper, a novel building block of proteins called Top-<it>n</it>-grams is presented, which contains the evolutionary information extracted from the protein sequence frequency profiles. The protein sequence frequency profiles are calculated from the multiple sequence alignments outputted by PSI-BLAST and converted into Top-<it>n</it>-grams. The protein sequences are transformed into fixed-dimension feature vectors by the occurrence times of each Top-<it>n</it>-gram. The training vectors are evaluated by SVM to train classifiers which are then used to classify the test protein sequences. We demonstrate that the prediction performance of remote homology detection and fold recognition can be improved by combining Top-<it>n</it>-grams and latent semantic analysis (LSA), which is an efficient feature extraction technique from natural language processing. When tested on superfamily and fold benchmarks, the method combining Top-<it>n</it>-grams and LSA gives significantly better results compared to related methods.</p> <p>Conclusion</p> <p>The method based on Top-<it>n</it>-grams significantly outperforms the methods based on many other building blocks including N-grams, patterns, motifs and binary profiles. Therefore, Top-<it>n</it>-gram is a good building block of the protein sequences and can be widely used in many tasks of the computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the prediction of protein binding sites.</p

    Protein Remote Homology Detection Based on an Ensemble Learning Approach

    Get PDF

    Protein Remote Homology Detection Based on an Ensemble Learning Approach

    Get PDF
    Protein remote homology detection is one of the central problems in bioinformatics. Although some computational methods have been proposed, the problem is still far from being solved. In this paper, an ensemble classifier for protein remote homology detection, called SVM-Ensemble, was proposed with a weighted voting strategy. SVM-Ensemble combined three basic classifiers based on different feature spaces, including Kmer, ACC, and SC-PseAAC. These features consider the characteristics of proteins from various perspectives, incorporating both the sequence composition and the sequence-order information along the protein sequences. Experimental results on a widely used benchmark dataset showed that the proposed SVM-Ensemble can obviously improve the predictive performance for the protein remote homology detection. Moreover, it achieved the best performance and outperformed other state-of-the-art methods

    A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM).</p> <p>Results</p> <p>We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function.</p> <p>Conclusions</p> <p>The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.</p

    Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition and remote homolog detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonnegative matrix factorization (NMF) is a feature extraction method that has the property of intuitive part-based representation of the original features. This unique ability makes NMF a potentially promising method for biological sequence analysis. Here, we apply NMF to fold recognition and remote homolog detection problems. Recent studies have shown that combining support vector machines (SVM) with profile-profile alignments improves performance of fold recognition and remote homolog detection remarkably. However, it is not clear which parts of sequences are essential for the performance improvement.</p> <p>Results</p> <p>The performance of fold recognition and remote homolog detection using NMF features is compared to that of the unmodified profile-profile alignment (PPA) features by estimating Receiver Operating Characteristic (ROC) scores. The overall performance is noticeably improved. For fold recognition at the fold level, SVM with NMF features recognize 30% of homolog proteins at > 0.99 ROC scores, while original PPA feature, HHsearch, and PSI-BLAST recognize almost none. For detecting remote homologs that are related at the superfamily level, NMF features also achieve higher performance than the original PPA features. At > 0.90 ROC<sub>50 </sub>scores, 25% of proteins with NMF features correctly detects remotely related proteins, whereas using original PPA features only 1% of proteins detect remote homologs. In addition, we investigate the effect of number of positive training examples and the number of basis vectors on performance improvement. We also analyze the ability of NMF to extract essential features by comparing NMF basis vectors with functionally important sites and structurally conserved regions of proteins. The results show that NMF basis vectors have significant overlap with functional sites from PROSITE and with structurally conserved regions from the multiple structural alignments generated by MUSTANG. The correlation between NMF basis vectors and biologically essential parts of proteins supports our conjecture that NMF basis vectors can explicitly represent important sites of proteins.</p> <p>Conclusion</p> <p>The present work demonstrates that applying NMF to profile-profile alignments can reveal essential features of proteins and that these features significantly improve the performance of fold recognition and remote homolog detection.</p

    Automatic prediction of catalytic residues by modeling residue structural neighborhood

    Get PDF
    Background: Prediction of catalytic residues is a major step in characterizing the function of enzymes. In its simpler formulation, the problem can be cast into a binary classification task at the residue level, by predicting whether the residue is directly involved in the catalytic process. The task is quite hard also when structural information is available, due to the rather wide range of roles a functional residue can play and to the large imbalance between the number of catalytic and non-catalytic residues.Results: We developed an effective representation of structural information by modeling spherical regions around candidate residues, and extracting statistics on the properties of their content such as physico-chemical properties, atomic density, flexibility, presence of water molecules. We trained an SVM classifier combining our features with sequence-based information and previously developed 3D features, and compared its performance with the most recent state-of-the-art approaches on different benchmark datasets. We further analyzed the discriminant power of the information provided by the presence of heterogens in the residue neighborhood.Conclusions: Our structure-based method achieves consistent improvements on all tested datasets over both sequence-based and structure-based state-of-the-art approaches. Structural neighborhood information is shown to be responsible for such results, and predicting the presence of nearby heterogens seems to be a promising direction for further improvements.Journal ArticleResearch Support, N.I.H. Extramuralinfo:eu-repo/semantics/publishe

    A novel neural response algorithm for protein function prediction

    Get PDF
    BACKGROUND: Large amounts of data are being generated by high-throughput genome sequencing methods. But the rate of the experimental functional characterization falls far behind. To fill the gap between the number of sequences and their annotations, fast and accurate automated annotation methods are required. Many methods, such as GOblet, GOFigure, and Gotcha, are designed based on the BLAST search. Unfortunately, the sequence coverage of these methods is low as they cannot detect the remote homologues. Adding to this, the lack of annotation specificity advocates the need to improve automated protein function prediction. RESULTS: We designed a novel automated protein functional assignment method based on the neural response algorithm, which simulates the neuronal behavior of the visual cortex in the human brain. Firstly, we predict the most similar target protein for a given query protein and thereby assign its GO term to the query sequence. When assessed on test set, our method ranked the actual leaf GO term among the top 5 probable GO terms with accuracy of 86.93%. CONCLUSIONS: The proposed algorithm is the first instance of neural response algorithm being used in the biological domain. The use of HMM profiles along with the secondary structure information to define the neural response gives our method an edge over other available methods on annotation accuracy. Results of the 5-fold cross validation and the comparison with PFP and FFPred servers indicate the prominent performance by our method. The program, the dataset, and help files are available at http://www.jjwanglab.org/NRProF/.published_or_final_versio
    corecore