26 research outputs found

    Minimization of Halftone Noise in FLAT Regions for Improved Print Quality

    Get PDF
    The work in this thesis proposes a novel algorithm for enhancing the quality of flat regions in printed color image documents. The algorithm is designed to identify the flat regions based on certain criteria and filter these regions to minimize the noise prior and post Halftoning so as to make the hard copy look visibly pleasing. Noise prior to halftone process is removed using a spatial Gaussian filter together with a Hamming window, concluded from results after implementing various filtering techniques. A clustered dithering is applied in each channel of the image as Halftoning process. Furthermore, to minimize the post halftone noise, the halftone structure of the image is manipulated according to the neighboring sub-cells in their respective channels. This is done to reduce the brightness variation (a cause for noise) between the neighboring subcells. Experimental results show that the proposed algorithm efficiently minimizes noise in flat regions of mirumal gradient change in color images

    Novel methods in image halftoning

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and Institute of Engineering and Science, Bilkent Univ., 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 97-101Halftoning refers to the problem of rendering continuous-tone (contone) images on display and printing devices which are capable of reproducing only a limited number of colors. A new adaptive halftoning method using the adaptive QR- RLS algorithm is developed for error diffusion which is one of the halftoning techniques. Also, a diagonal scanning strategy to exploit the human visual system properties in processing the image is proposed. Simulation results on color images demonstrate the superior quality of the new method compared to the existing methods. Another problem studied in this thesis is inverse halftoning which is the problem of recovering a contone image from a given halftoned image. A novel inverse halftoning method is developed for restoring a contone image from the halftoned image. A set theoretic formulation is used where sets are defined using the prior information about the problem. A new space domain projection is introduced assuming the halftoning is performed ,with error diffusion, and the error diffusion filter kernel is known. The space domain, frequency domain, and space-scale domain projections are used alternately to obtain a feasible solution for the inverse halftoning problem which does not have a unique solution. Simulation results for both grayscale and color images give good results, and demonstrate the effectiveness of the proposed inverse halftoning method.Bozkurt, GözdeM.S

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Halftoning for Multi-Channel Printing : Algorithm Development, Implementation and Verification

    Full text link

    Detail and contrast enhancement in images using dithering and fusion

    Get PDF
    This thesis focuses on two applications of wavelet transforms to achieve image enhancement. One of the applications is image fusion and the other one is image dithering. Firstly, to improve the quality of a fused image, an image fusion technique based on transform domain has been proposed as a part of this research. The proposed fusion technique has also been extended to reduce temporal redundancy associated with the processing. Experimental results show better performance of the proposed methods over other methods. In addition, achievements have been made in terms of enhancing image contrast, capturing more image details and efficiency in processing time when compared to existing methods. Secondly, of all the present image dithering methods, error diffusion-based dithering is the most widely used and explored. Error diffusion, despite its great success, has been lacking in image enhancement aspects because of the softening effects caused by this method. To compensate for the softening effects, wavelet-based dithering was introduced. Although wavelet-based dithering worked well in removing the softening effects, as the method is based on discrete wavelet transform, it lacked in aspects like poor directionality and shift invariance, which are responsible for making the resultant images look sharp and crisp. Hence, a new method named complex wavelet-based dithering has been introduced as part of this research to compensate for the softening effects. Image processed by the proposed method emphasises more on details and exhibits better contrast characteristics in comparison to the existing methods

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique

    Conference on Binary Optics: An Opportunity for Technical Exchange

    Get PDF
    The papers herein were presented at the Conference on Binary Optics held in Huntsville, AL, February 23-25, 1993. The papers were presented according to subject as follows: modeling and design, fabrication, and applications. Invited papers and tutorial viewgraphs presented on these subjects are included

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore